Real-time complex signal processing in a SAW broad-band convolver

Author(s):  
A.M. Kawalec
Author(s):  
Fabao Yan ◽  
Yang Liu ◽  
Ke Xu ◽  
Ziqian Shang ◽  
Yuanyuan Zhang ◽  
...  

Abstract Computation resource is the limiting factor in higher operational accuracy of field-programmable gate arrays (FPGAs) in solar radio digital receivers. The data truncation strategy which determines the accuracy of data is then the essential technology in the design of a receiving system. Based on the solar radio spectrometer (dual channel, 14 bit, 1.25 gigasamples per second) at the Chashan Solar Radio Observatory (CSO), this paper presents a data truncation strategy which can realize real-time solar radio observation (35–40 GHz) with high time and frequency resolution as well as a large dynamic range, and at the same time saves the computation resource to a large extent. Simulations of truncations during signal processing are carried out in MATLAB, and the best truncation mechanisms are deduced for windowing and fast Fourier transform (FFT). Using the simulation results, the best truncation strategies have been implemented in the solar radio receiver at CSO with the result that the best truncation bits for the windowing operation are [27 : 14], with an error of 2.5 × 10−4, and the best truncation bits for the FFT output are [20 : 5] with an error of 1.5 × 10−3. Compared with the processing of full-precision data, occupation of the computation resources in the FPGA can be reduced significantly. For instance, the lookup table, lookup table RAM, flip flop, and digital signal processing slices are reduced by 7.36%, 14.65%, 8.38%, and 24.94%, respectively, which guarantees broad-band real-time solar radio observations (35–40 GHz).


2020 ◽  
Vol 91 (10) ◽  
pp. 104707
Author(s):  
Yinyu Liu ◽  
Hao Xiong ◽  
Chunhui Dong ◽  
Chaoyang Zhao ◽  
Quanfeng Zhou ◽  
...  

2013 ◽  
Vol 333-335 ◽  
pp. 650-655
Author(s):  
Peng Hui Niu ◽  
Yin Lei Qin ◽  
Shun Ping Qu ◽  
Yang Lou

A new signal processing method for phase difference estimation was proposed based on time-varying signal model, whose frequency, amplitude and phase are time-varying. And then be applied Coriolis mass flowmeter signal. First, a bandpass filtering FIR filter was applied to filter the sensor output signal in order to improve SNR. Then, the signal frequency could be calculated based on short-time frequency estimation. Finally, by short window intercepting, the DTFT algorithm with negative frequency contribution was introduced to calculate the real-time phase difference between two enhanced signals. With the frequency and the phase difference obtained, the time interval of two signals was calculated. Simulation results show that the algorithms studied are efficient. Furthermore, the computation of algorithms studied is simple so that it can be applied to real-time signal processing for Coriolis mass flowmeter.


Sign in / Sign up

Export Citation Format

Share Document