scholarly journals Data association using game theory for multi-target tracking in passive bistatic radar

Author(s):  
Abdullahi Daniyan ◽  
Abdulrazaq Aldowesh ◽  
Yu Gong ◽  
Sangarapillai Lambotharan
Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6196
Author(s):  
Xueqin Zhou ◽  
Hong Ma ◽  
Hang Xu

This paper presents a description of recent research and the multi-target tracking in experimental passive bistatic radar (PBR) system taking advantage of numerous non-cooperative AM radio signals via multi-static doppler shifts. However, it raises challenges for use by multiple spatially distributed AM radio illuminators for multi-target tracking in PBR system due to complex data association hypotheses and no directly used tracking algorithm in the practical scenario. To solve these problems, after a series of key array signal processing techniques in the self-developed system, by constructing a nonlinear measurement model, the novel method is proposed to accommodate nonlinear model by using the unscented transformation (UT) in Gaussian mixture (GM) implementation of iterated-corrector cardinality-balanced multi-target multi-Bernoulli (CBMeMBer). Simulation and experimental results analysis verify the feasibility of this approach used in a practical PBR system for moving multi-target tracking.


Author(s):  
Andinet Hunde ◽  
Beshah Ayalew

Target tracking in public traffic calls for a tracking system with automated track initiation and termination facilities in a randomly evolving driving environment. In addition, the key problem of data association needs to be handled effectively considering the limitations in the computational resources onboard an autonomous car. In this paper, we discuss a multi-target tracking system that addresses target birth/initiation and death/termination processes with automatic track management feature. The tracking system is based on Linear Multi-target Integrated Probabilistic Data Association Filter (LMIPDAF), which is adapted to specifically include algorithms that handle track initiation and termination, clutter density estimation and track management. The performance of the proposed tracking algorithm is compared to other single and multi-target tracking schemes and is shown to have acceptable tracking error. It is further illustrated through multiple traffic simulations that the computational requirement of the tracking algorithm is less than that of optimal multi-target tracking algorithms that explicitly address data association uncertainties.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2003
Author(s):  
Yu Yao ◽  
Junhui Zhao ◽  
Lenan Wu

In many wireless sensors, the target kinematic states include location and Doppler information that can be observed from a time series of range and velocity measurements. In this work, we present a tracking strategy for comprising target velocity components as part of the measurement supplement procedure and evaluate the advantages of the proposed scheme. Data association capability can be considered as the key performance for multi-target tracking in an active sonar system. Then, we proposed an enhanced Doppler data association (DDA) scheme which exploits target range and target velocity components for linear multi-target tracking. If the target velocity measurements are not incorporated into target kinematic state tracking, the linear filter bank for the combination of target velocity components can be implemented. Finally, a significant enhancement in the multi-target tracking capability provided by the proposed DDA scheme with the linear multi-target combined probabilistic data association method is demonstrated in a sonar underwater scenario.


Sign in / Sign up

Export Citation Format

Share Document