scholarly journals Doppler Data Association Scheme for Multi-Target Tracking in an Active Sonar System

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2003
Author(s):  
Yu Yao ◽  
Junhui Zhao ◽  
Lenan Wu

In many wireless sensors, the target kinematic states include location and Doppler information that can be observed from a time series of range and velocity measurements. In this work, we present a tracking strategy for comprising target velocity components as part of the measurement supplement procedure and evaluate the advantages of the proposed scheme. Data association capability can be considered as the key performance for multi-target tracking in an active sonar system. Then, we proposed an enhanced Doppler data association (DDA) scheme which exploits target range and target velocity components for linear multi-target tracking. If the target velocity measurements are not incorporated into target kinematic state tracking, the linear filter bank for the combination of target velocity components can be implemented. Finally, a significant enhancement in the multi-target tracking capability provided by the proposed DDA scheme with the linear multi-target combined probabilistic data association method is demonstrated in a sonar underwater scenario.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaohua Li ◽  
Bo Lu ◽  
Wasiq Ali ◽  
Jun Su ◽  
Haiyan Jin

The major advantage of the passive multiple-target tracking is that the sonars do not emit signals and thus they can remain covert, which will reduce the risk of being attacked. However, the nonlinearity of the passive Doppler and bearing measurements, the range unobservability problem, and the measurement to target data association uncertainty make the passive multiple-target tracking problem challenging. To deal with the target to measurement data association uncertainty problem from multiple sensors, this paper proposed a batch recursive extended Rauch-Tung-Striebel smoother- (RTSS-) based probabilistic multiple hypothesis tracker (PMHT) algorithm, which can effectively handle a large number of passive measurements including clutters. The recursive extended RTSS which consists of a forward filter and a backward smoothing is used to deal with the nonlinear Doppler and bearing measurements. The target range unobservability problem is avoided due to using multiple passive sensors. The simulation results show that the proposed algorithm works well in a passive multiple-target tracking system under dense clutter environment, and its computing cost is low.


Author(s):  
Andinet Hunde ◽  
Beshah Ayalew

Target tracking in public traffic calls for a tracking system with automated track initiation and termination facilities in a randomly evolving driving environment. In addition, the key problem of data association needs to be handled effectively considering the limitations in the computational resources onboard an autonomous car. In this paper, we discuss a multi-target tracking system that addresses target birth/initiation and death/termination processes with automatic track management feature. The tracking system is based on Linear Multi-target Integrated Probabilistic Data Association Filter (LMIPDAF), which is adapted to specifically include algorithms that handle track initiation and termination, clutter density estimation and track management. The performance of the proposed tracking algorithm is compared to other single and multi-target tracking schemes and is shown to have acceptable tracking error. It is further illustrated through multiple traffic simulations that the computational requirement of the tracking algorithm is less than that of optimal multi-target tracking algorithms that explicitly address data association uncertainties.


Sign in / Sign up

Export Citation Format

Share Document