passive bistatic radar
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 55)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 13 (23) ◽  
pp. 4954
Author(s):  
Luo Zuo ◽  
Jun Wang ◽  
Jinxin Sui ◽  
Nan Li

Clutter suppression is a challenging problem for passive bistatic radar systems, given the complexity of actual clutter scenarios (stationary, time-varying and fractional-order clutter). Such complex clutter induces intense sidelobes in the entire range-Doppler plane and thus degrades target-detection performance, especially for low-observable targets. In this paper, a novel method, denominated as the batch version of the extensive cancellation algorithm (ECA) in the frequency domain (ECA-FB), is presented for the first time, to suppress stationary clutter and its sidelobes. Specifically, in this method, the received signal is first divided into short batches in the frequency domain to coarsen the range resolution, and then the clutter is removed over each batch via ECA. Further, to suppress the time-varying clutter, a Doppler-shifted version of ECA-FB (ECA-FBD) is proposed. Compared with the popular ECA and ECA-B methods, the proposed ECA-FB and ECA-FBD obtained superior complex clutter suppression and slow-moving target detection performance with lower computational complexity. A series of simulation and experimental results are provided to demonstrate the validity of the proposed methods.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6736
Author(s):  
Jipeng Wang ◽  
Jun Wang ◽  
Yun Zhu ◽  
Dawei Zhao

The novel sensing technology airborne passive bistatic radar (PBR) has the problem of being affecting by multipath components in the reference signal. Due to the movement of the receiving platform, different multipath components contain different Doppler frequencies. When the contaminated reference signal is used for space–time adaptive processing (STAP), the power spectrum of the spatial–temporal clutter is broadened. This can cause a series of problems, such as affecting the performance of clutter estimation and suppression, increasing the blind area of target detection, and causing the phenomenon of target self-cancellation. To solve this problem, the authors of this paper propose a novel algorithm based on sparse Bayesian learning (SBL) for direct clutter estimation and multipath clutter suppression. The specific process is as follows. Firstly, the space–time clutter is expressed in the form of covariance matrix vectors. Secondly, the multipath cost is decorrelated in the covariance matrix vectors. Thirdly, the modeling error is reduced by alternating iteration, resulting in a space–time clutter covariance matrix without multipath components. Simulation results showed that this method can effectively estimate and suppress clutter when the reference signal is contaminated.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6196
Author(s):  
Xueqin Zhou ◽  
Hong Ma ◽  
Hang Xu

This paper presents a description of recent research and the multi-target tracking in experimental passive bistatic radar (PBR) system taking advantage of numerous non-cooperative AM radio signals via multi-static doppler shifts. However, it raises challenges for use by multiple spatially distributed AM radio illuminators for multi-target tracking in PBR system due to complex data association hypotheses and no directly used tracking algorithm in the practical scenario. To solve these problems, after a series of key array signal processing techniques in the self-developed system, by constructing a nonlinear measurement model, the novel method is proposed to accommodate nonlinear model by using the unscented transformation (UT) in Gaussian mixture (GM) implementation of iterated-corrector cardinality-balanced multi-target multi-Bernoulli (CBMeMBer). Simulation and experimental results analysis verify the feasibility of this approach used in a practical PBR system for moving multi-target tracking.


2021 ◽  
Vol 13 (18) ◽  
pp. 3556
Author(s):  
Ileana Milani ◽  
Carlo Bongioanni ◽  
Fabiola Colone ◽  
Pierfrancesco Lombardo

In this work, we consider the joint use of different passive sensors for the localization and tracking of human targets and small drones at short ranges, based on the parasitic exploitation of Wi-Fi signals. Two different sensors are considered in this paper: (i) Passive Bistatic Radar (PBR) that exploits the Wi-Fi Access Point (AP) as an illuminator of opportunity to perform uncooperative target detection and localization and (ii) Passive Source Location (PSL) that uses radio frequency (RF) transmissions from the target to passively localize it, assuming that it is equipped with Wi-Fi devices. First, we show that these techniques have complementary characteristics with respect to the considered surveillance applications that typically include targets with highly variable motion parameters. Therefore, an appropriate sensor fusion strategy is proposed, based on a modified version of the Interacting Multiple Model (IMM) tracking algorithm, in order to benefit from the information diversity provided by the two sensors. The performance of the proposed strategy is evaluated against both simulated and experimental data and compared to the performance of the single sensors. The results confirm that the joint exploitation of the considered sensors based on the proposed strategy largely improves the positioning accuracy, target motion recognition capability and continuity in target tracking.


2021 ◽  
Vol 13 (17) ◽  
pp. 3429
Author(s):  
Yingjie Miao ◽  
Jingchun Li ◽  
Yao Bao ◽  
Feifeng Liu ◽  
Cheng Hu

The increasing accessibility of unmanned aerial vehicles (UAVs) drives the demand for reliable, easy-to-deploy surveillance systems to consolidate public security. This paper employs passive bistatic radar (PBR) based on a digital audio broadcast (DAB) satellite for UAV monitoring in applications with power density limitations on electromagnetic radiation. An advanced version of the extensive cancellation algorithm (ECA) based on data segmentation and coefficients filtering is designed to improve the efficiency of multipath clutter suppression while retaining robustness, for which the effectiveness is verified by theoretical derivation and simulation. The detectability of small UAVs with DAB satellite-based PBR is validated with experimental results, with which the influence of target altitude and bistatic geometry are also analyzed.


2021 ◽  
Author(s):  
Purushottama Lingadevaru ◽  
Bethi Pardhasaradhi ◽  
Pathipati Srihari ◽  
GVK Sharma

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3607
Author(s):  
Luo Zuo ◽  
Jun Wang ◽  
Te Zhao ◽  
Zuhan Cheng

In a digital terrestrial multimedia broadcasting (DTMB)-based passive bistatic radar (PBR) system, the received reference signal often suffers from serious multipath effect, which decreases the detection ability of low-observable targets in urban environments. In order to improve the target detection performance, a novel reference signal purification method based on the low-rank and sparse feature is proposed in this paper. Specifically, this method firstly performs synchronization operations to the received reference signal and thus obtains the corresponding pseudo-noise (PN) sequences. Then, by innovatively exploiting the inherent low-rank structure of DTMB signals, the noise component in PN sequences is reduced. After that, a temporal correlation (TC)-based adaptive orthogonal matching pursuit (OMP) method, i.e., TC-AOMP, is performed to acquire the reliable channel estimation, whereby the previous noise-reduced PN sequences and a new halting criterion are utilized to improve channel estimation accuracy. Finally, the purification reference signal is obtained via equalization operation. The advantage of the proposed method is that it can obtain superior channel estimation performance and is more efficient compared to existing methods. Numerical and experimental results collected from the DTMB-based PBR system are presented to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document