Missing Child Identification System Using Deep Learning and Multiclass SVM

Author(s):  
Pournami S. Chandran ◽  
N B Byju ◽  
R U Deepak ◽  
K N Nishakumari ◽  
P Devanand ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5523 ◽  
Author(s):  
Nada Alay ◽  
Heyam H. Al-Baity

With the increasing demand for information security and security regulations all over the world, biometric recognition technology has been widely used in our everyday life. In this regard, multimodal biometrics technology has gained interest and became popular due to its ability to overcome a number of significant limitations of unimodal biometric systems. In this paper, a new multimodal biometric human identification system is proposed, which is based on a deep learning algorithm for recognizing humans using biometric modalities of iris, face, and finger vein. The structure of the system is based on convolutional neural networks (CNNs) which extract features and classify images by softmax classifier. To develop the system, three CNN models were combined; one for iris, one for face, and one for finger vein. In order to build the CNN model, the famous pertained model VGG-16 was used, the Adam optimization method was applied and categorical cross-entropy was used as a loss function. Some techniques to avoid overfitting were applied, such as image augmentation and dropout techniques. For fusing the CNN models, different fusion approaches were employed to explore the influence of fusion approaches on recognition performance, therefore, feature and score level fusion approaches were applied. The performance of the proposed system was empirically evaluated by conducting several experiments on the SDUMLA-HMT dataset, which is a multimodal biometrics dataset. The obtained results demonstrated that using three biometric traits in biometric identification systems obtained better results than using two or one biometric traits. The results also showed that our approach comfortably outperformed other state-of-the-art methods by achieving an accuracy of 99.39%, with a feature level fusion approach and an accuracy of 100% with different methods of score level fusion.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 127329-127342
Author(s):  
Ruey-Kai Sheu ◽  
Yuan-Cheng Lin ◽  
Chin-Yin Huang ◽  
Lun-Chi Chen ◽  
Mayuresh Sunil Pardeshi ◽  
...  

2018 ◽  
Vol 7 (3.34) ◽  
pp. 237
Author(s):  
R Aswini Priyanka ◽  
C Ashwitha ◽  
R Arun Chakravarthi ◽  
R Prakash

In scientific world, Face recognition becomes an important research topic. The face identification system is an application capable of verifying a human face from a live videos or digital images. One of the best methods is to compare the particular facial attributes of a person with the images and its database. It is widely used in biometrics and security systems. Back in old days, face identification was a challenging concept. Because of the variations in viewpoint and facial expression, the deep learning neural network came into the technology stack it’s been very easy to detect and recognize the faces. The efficiency has increased dramatically. In this paper, ORL database is about the ten images of forty people helps to evaluate our methodology. We use the concept of Back Propagation Neural Network (BPNN) in deep learning model is to recognize the faces and increase the efficiency of the model compared to previously existing face recognition models.   


Author(s):  
Yina Wu ◽  
Mohamed Abdel-Aty ◽  
Ou Zheng ◽  
Qing Cai ◽  
Shile Zhang

This paper presents an automated traffic safety diagnostics solution named “Automated Roadway Conflict Identification System” (ARCIS) that uses deep learning techniques to process traffic videos collected by unmanned aerial vehicle (UAV). Mask region convolutional neural network (R-CNN) is employed to improve detection of vehicles in UAV videos. The detected vehicles are tracked by a channel and spatial reliability tracking algorithm, and vehicle trajectories are generated based on the tracking algorithm. Missing vehicles can be identified and tracked by identifying stationary vehicles and comparing intersect of union (IOU) between the detection results and the tracking results. Rotated bounding rectangles based on the pixel-to-pixel manner masks that are generated by mask R-CNN detection are introduced to obtain precise vehicle size and location data. Based on the vehicle trajectories, post-encroachment time (PET) is calculated for each conflict event at the pixel level. By comparing the PET values and the threshold, conflicts with the corresponding pixels in which the conflicts happened can be reported. Various conflict types: rear-end, head on, sideswipe, and angle, can also be determined. A case study at a typical signalized intersection is presented; the results indicate that the proposed framework could significantly improve the accuracy of the output data. Moreover, safety diagnostics for the studied intersection are conducted by calculating the PET values for each conflict event. It is expected that the proposed detection and tracking method with UAVs could help diagnose road safety problems efficiently and appropriate countermeasures could then be proposed.


2020 ◽  
Vol 102 ◽  
pp. 101755 ◽  
Author(s):  
Wenping Tang ◽  
Aiqun Wang ◽  
S. Ramkumar ◽  
Radeep Krishna Radhakrishnan Nair

Sign in / Sign up

Export Citation Format

Share Document