vehicle trajectories
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 101)

H-INDEX

20
(FIVE YEARS 7)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Junfang Song ◽  
Yao Fan ◽  
Huansheng Song ◽  
Haili Zhao

In traffic scenarios, vehicle trajectories can provide almost all the dynamic information of moving vehicles. Analyzing the vehicle trajectory in the monitoring scene can grasp the dynamic road traffic information. Cross-camera association of vehicle trajectories in multiple cameras can break the isolation of target information between single cameras and obtain the overall road operation conditions in a large-scale video surveillance area, which helps road traffic managers to conduct traffic analysis, prediction, and control. Based on the framework of DBT automatic target detection, this paper proposes a cross-camera vehicle trajectory correlation matching method based on the Euclidean distance metric correlation of trajectory points. For the multitarget vehicle trajectory acquired in a single camera, we first perform 3D trajectory reconstruction based on the combined camera calibration in the overlapping area and then complete the similarity association between the cross-camera trajectories and the cross-camera trajectory update, and complete the trajectory transfer of the vehicle between adjacent cameras. Experiments show that the method in this paper can well solve the problem that the current tracking technology is difficult to match the vehicle trajectory under different cameras in complex traffic scenes and essentially achieves long-term and long-distance continuous tracking and trajectory acquisition of multiple targets across cameras.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qianxia Cao ◽  
Zhongxing Zhao ◽  
Qiaoqiong Zeng ◽  
Zhengwu Wang ◽  
Kejun Long

Real-time prediction of vehicle trajectory at unsignalized intersections is important for real-time traffic conflict detection and early warning to improve traffic safety at unsignalized intersections. In this study, we propose a robust real-time prediction method for turning movements and vehicle trajectories using deep neural networks. Firstly, a vision-based vehicle trajectory extraction system is developed to collect vehicle trajectories and their left-turn, go straight, and right-turn labels to train turning recognition models and multilayer LSTM deep neural networks for the prediction task. Then, when performing vehicle trajectory prediction, we propose the vehicle heading angle change trend method to recognize the future move of the target vehicle to turn left, go straight, and turn right based on the trajectory data characteristics of the target vehicle before passing the stop line. Finally, we use the trained multilayer LSTM models of turning left, going straight, and turning right to predict the trajectory of the target vehicle through the intersection. Based on the TensorFlow-GPU platform, we use Yolov5-DeepSort to automatically extract vehicle trajectory data at unsignalized intersections. The experimental results show that the proposed method performs well and has a good performance in both speed and accuracy evaluation.


Author(s):  
Haoxiang Liang ◽  
Huansheng Song ◽  
Xu Yun ◽  
Shijie Sun ◽  
Yingxuan Wang ◽  
...  

AbstractTraffic incidents endanger the smooth running of vehicles. Congestion caused by traffic incidents has caused a waste of time and fuel and seriously affected transportation efficiency. At present, most methods use manual judgment or image features to detect traffic incidents, but these methods lack timeliness, leading to secondary incidents. For dangerous road sections such as ramp-free and long downhills, this paper proposes an algorithm to quickly detect traffic incidents based on a spatiotemporal map of vehicle trajectories. First, a vehicle dataset from the monitoring perspective is constructed, and an improved YOLOv4 detection algorithm is used to detect images organized as batches. Based on the detection result, the multi-object tracking method of vehicle speed prediction in key frames is used to obtain the vehicle trajectory. Then according to the vehicle trajectory obtained in a single scene, the vehicle trajectory is reidentified and associated in the continuous monitoring scene to construct a long-distance vehicle trajectory spatiotemporal map. Finally, according to the distribution and generation status of the trajectory in the spatiotemporal map, traffic incidents such as vehicle parking, vehicle speeding, and vehicle congestion are analyzed. Experimental results show that the proposed method greatly increases the speed of vehicle detection and tracking and obtains high mAP, MOTA, and MOTP indicators. The global spatiotemporal map constructed by trajectory reidentification can achieve high detection rates for traffic incidents, reduce the average elapsed time, and avoid the problems of the inaccuracy of analyzing image features.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jiantao Mu ◽  
Yin Han ◽  
Cheng Zhang ◽  
Jiao Yao ◽  
Jing Zhao

On-board data of detected vehicles play a critical role in the management of urban road traffic operation and the estimation of traffic status. Unfortunately, due to limitations of technology and privacy issues, the sampling frequency of the detected vehicle data is low and the coverage is also limited. Continuous vehicle trajectories cannot be obtained. To overcome the above problems, this paper proposes an unscented Kalman filter (UKF)-based method to reconstruct the trajectories at signalized intersections using sparse probe data of vehicles. We first divide the intersection into multiple road sections and use a quadratic programming problem to estimate the travel time of each section. The weight of each initial possible trajectory is calculated separately, and the trajectory is updated using the unscented Kalman filter (UKF); then, the trajectory between two updates is also obtained accordingly. Finally, the method is applied to the actual scenario provided by the NGSIM data and compared with the real trajectory. The mean absolute error (MAE) is adopted to evaluate the accuracy of the proposed trajectory reconstruction. Sensitivity analysis is provided in order to provide the requirement of sampling frequency to obtain highly accurate reconstructed vehicle trajectories under this method. The results demonstrate the applicability of the technique to the signalized intersection. Therefore, the method enables us to obtain richer and more accurate trajectory data information, providing a strong prior basis for future urban road traffic management and scholars using trajectory data for various studies.


2021 ◽  
Vol 13 (24) ◽  
pp. 4994
Author(s):  
Qing Li ◽  
Zhanzhan Lei ◽  
Jiasong Zhu ◽  
Jiaxin Chen ◽  
Tianzhu Ma

Urban road intersections are one of the key components of road networks. Due to complex and diverse traffic conditions, traffic conflicts occur frequently. Accurate traffic conflict detection allows improvement of the traffic conditions and decreases the probability of traffic accidents. Many time-based conflict indicators have been widely studied, but the sizes of the vehicles are ignored. This is a very important factor for conflict detection at urban intersections. Therefore, in this paper we propose a novel time difference conflict indicator by incorporating vehicle sizes instead of viewing vehicles as particles. Specially, we designed an automatic conflict recognition framework between vehicles at the urban intersections. The vehicle sizes are automatically extracted with the sparse recurrent convolutional neural network, and the vehicle trajectories are obtained with a fast-tracking algorithm based on the intersection-to-union ratio. Given tracking vehicles, we improved the time difference to the conflict metric by incorporating vehicle size information. We have conducted extensive experiments and demonstrated that the proposed framework can effectively recognize vehicle conflict accurately.


2021 ◽  
Vol 13 (23) ◽  
pp. 4764
Author(s):  
Weiming Tang ◽  
Yangyang Li ◽  
Chenlong Deng ◽  
Xuan Zou ◽  
Yawei Wang ◽  
...  

The rapid development of unmanned aerial vehicles (UAVs) in recent years has promoted their application in various fields, such as precise agriculture, formation flight, etc. In these applications, the accurate and reliable real-time position and attitude determination between each moving device in the same platform system are the key issue for safe and effective cooperative works. In traditional ways, static reference stations should be set up near the platform to keep the stable position datum of the platform system. In this paper, we abandoned the static stations and expected to achieve stable position datums with the platform system itself. To achieve this goal, we proposed an improved method based on both the Global Positioning System (GPS)/Beidou Navigation Satellite System (BDS) data and the inertial navigation system (INS) data to obtain precise positions of the moving devices. The time-differenced carrier phase (TDCP) was used to get the position variations and update the positions over time, and then, the INS data was integrated to further improve the accuracy and reliability of the updated positions; thus, this method is denoted as the TDCP/INS method. To evaluate the performance of this method and compare it with the traditional single-point positioning (SPP) method and the Kalman filtered SPP (KFSPP) method, a field vehicle experiment was conducted, and the position results achieved from these three methods were compared with those from the tightly combined real-time kinematic positioning (RTK)/INS method, where centimeter-level accuracy was obtained and regarded as the reference. The quantitative analysis where the position variations were evaluated and the qualitative analysis where the vehicle trajectories in three typical urban driving scenarios were discussed were both made for the three methods. The numerical results showed that the accuracy of the position variations from the SPP, KSPP, and TDCP methods was at the meter level, while that from the TDCP/INS method improved to the centimeter level, and the accuracies were 1.9 cm, 2.9 cm, and 3.1 cm in the east, north, and upward directions. The trajectory results also demonstrated a perfect consistency of the driving positions between the TDCP/INS method and the reference. As a contrast, the trajectories from the SPP and KFSPP methods had frequent jumps or sways when the vehicle drove along a large, curved road, turned at a crossroad, and passed under an urban viaduct.


2021 ◽  
Vol 11 (23) ◽  
pp. 11143
Author(s):  
Trieu Minh Vu ◽  
Reza Moezzi ◽  
Jindrich Cyrus ◽  
Jaroslav Hlava ◽  
Michal Petru

This study presents smooth and fast feasible trajectory generation for autonomous driving vehicles subject to the vehicle physical constraints on the vehicle power, speed, acceleration as well as the hard limitations of the vehicle steering angle and the steering angular speed. This is due to the fact the vehicle speed and the vehicle steering angle are always in a strict relationship for safety purposes, depending on the real vehicle driving constraints, the environmental conditions, and the surrounding obstacles. Three different methods of the position quintic polynomial, speed quartic polynomial, and symmetric polynomial function for generating the vehicle trajectories are presented and illustrated with simulations. The optimal trajectory is selected according to three criteria: Smoother curve, smaller tracking error, and shorter distance. The outcomes of this paper can be used for generating online trajectories for autonomous driving vehicles and auto-parking systems.


Author(s):  
Shenyang Cao ◽  
Yongli Zhang ◽  
Pan Ding ◽  
Xiaocheng Zhai ◽  
Wenwei Liu ◽  
...  

2021 ◽  
Vol 10 (11) ◽  
pp. 769
Author(s):  
Zhuhua Liao ◽  
Hao Xiao ◽  
Silin Liu ◽  
Yizhi Liu ◽  
Aiping Yi

The adaptability of traffic lights in the control of vehicle traffic heavily affects the trafficability of vehicles and the travel efficiency of traffic participants in busy urban areas. Existing studies mainly have focused on the presence of traffic lights, but rarely evaluate the impact of traffic lights by analyzing traffic data, thus there is no solution for practicably and precisely self-regulating traffic lights. To address these issues, we propose a low-cost and fast traffic signal detection and impact assessment framework, which detects traffic lights from GPS trajectories and intersection features in a supervised way, and analyzes the impact range and time of traffic lights from intersection track data segments. The experimental results show that our approach gains the best AUC value of 0.95 under the ROC standard classification and indicates that the impact pattern of traffic lights at intersections is high related to the travel rule of traffic participants.


Sign in / Sign up

Export Citation Format

Share Document