Adaptive control of a single-link flexible manipulator in the presence of joint friction and load changes

Author(s):  
V. Feliu ◽  
K.S. Rattan ◽  
H.B. Brown
1991 ◽  
Vol 138 (2) ◽  
pp. 153 ◽  
Author(s):  
Tzung-Cheng Yang ◽  
Jackson C.S. Yang ◽  
Prabhakar Kudva

1990 ◽  
Vol 10 (2) ◽  
pp. 29-33 ◽  
Author(s):  
V. Feliu ◽  
K.S. Rattan ◽  
H.B. Brown

1992 ◽  
Vol 22 (1) ◽  
pp. 85-91 ◽  
Author(s):  
T.-C. Yang ◽  
J.C.S. Yang ◽  
P. Kudva

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1522
Author(s):  
Fuli Zhang ◽  
Zhaohui Yuan

The flexible manipulato is widely used in the aerospace industry and various other special fields. Control accuracy is affected by the flexibility, joint friction, and terminal load. Therefore, this paper establishes a robot dynamics model under the coupling effect of flexibility, friction, and terminal load, and analyzes and studies its control. First of all, taking the structure of the central rigid body, the flexible beam, and load as the research object, the dynamic model of a flexible manipulator with terminal load is established by using the hypothesis mode and the Lagrange method. Based on the balance principle of the force and moment, the friction under the influence of flexibility and load is recalculated, and the dynamic model of the manipulator is further improved. Secondly, the coupled dynamic system is decomposed and the controller is designed by the multivariable feedback controller. Finally, using MATLAB as the simulation platform, the feasibility of dynamic simulation is verified through simulation comparison. The results show that the vibration amplitude can be reduced with the increase of friction coefficient. As the load increases, the vibration can increase further. The trajectory tracking and vibration suppression of the manipulator are effective under the control method of multi-feedback moment calculation. The research is of great significance to the control of flexible robots under the influence of multiple factors.


Author(s):  
Kerem Gurses ◽  
Bradley J. Buckman ◽  
Edward J. Park

This paper presents a novel feedback sensing approach for actively suppressing vibrations of a single-link flexible manipulator. Slewing of the flexible link by a rotating hub induces vibrations in the link that persist long after the hub stops rotating. These vibrations are suppressed through a combined scheme of PD-based hub motion control and proposed piezoelectric (PZT) actuator control, which is a composite linear and velocity feedback controller. Lyapunov approach was used to synthesize the controller based on a finite element model of the system. Its realization was possible due to the availability of both linear and angular velocity feedback provided by a unique, commercially-available fiber optic curvature sensor array, called ShapeTape™. It is comprised of an array of fiber optic curvature sensors, laminated on a long, thin ribbon tape, geometrically arranged in such a way that, when it is embedded into the flexible link, the bend and twist of the link’s centerline can be measured. Experimental results show the effectiveness of the proposed approach.


2021 ◽  
Vol 162 ◽  
pp. 104347
Author(s):  
Lewei Tang ◽  
Marc Gouttefarde ◽  
Haining Sun ◽  
Lairong Yin ◽  
Changjiang Zhou

Sign in / Sign up

Export Citation Format

Share Document