Velocity Estimation for Moving Target Refocusing in the Long-Time Coherent Integration SAR Imaging

Author(s):  
Dandan Gu ◽  
Hui Yue ◽  
Bingtan Lu ◽  
Xiuli Xu
2020 ◽  
Vol 107 ◽  
pp. 102854
Author(s):  
Mingming Tian ◽  
Guisheng Liao ◽  
Shengqi Zhu ◽  
Yongjun Liu ◽  
Xiongpeng He ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 1810
Author(s):  
Xichao Dong ◽  
Chang Cui ◽  
Yuanhao Li ◽  
Cheng Hu

Geosynchronous spaceborne-airborne bistatic synthetic aperture radar (GEO SA-BSAR), consisting of GEO transmitter and airborne receiver, has stable coverage for a long time and benefits moving target detection. However, the performance of GEO SA-BSAR moving target indication (MTI) system varies widely between bistatic configurations. The traditional configuration design for GEO SA-BSAR system only considers the imaging performance, which may cause the poor MTI performance. In this paper, we propose a bistatic configuration design method to jointly optimize the MTI and SAR imaging performance for GEO SA-BSAR MTI system. The relationship between the MTI performance and bistatic configuration parameters is derived analytically and analyzed based on the maximum output signal to clutter and noise ratio (SCNR) criterion. Then, the MTI performance and SAR imaging performance are jointly considered to model the configuration design problem as a multi-objective optimization problem under the constrained condition. Finally, the optimal configuration for GEO SA-BSAR MTI system is given.


2021 ◽  
Vol 13 (4) ◽  
pp. 701 ◽  
Author(s):  
Binbin Wang ◽  
Hao Cha ◽  
Zibo Zhou ◽  
Bin Tian

Clutter cancellation and long time integration are two vital steps for global navigation satellite system (GNSS)-based bistatic radar target detection. The former eliminates the influence of direct and multipath signals on the target detection performance, and the latter improves the radar detection range. In this paper, the extensive cancellation algorithm (ECA), which projects the surveillance channel signal in the subspace orthogonal to the clutter subspace, is first applied in GNSS-based bistatic radar. As a result, the clutter has been removed from the surveillance channel effectively. For long time integration, a modified version of the Fourier transform (FT), called long-time integration Fourier transform (LIFT), is proposed to obtain a high coherent processing gain. Relative acceleration (RA) is defined to describe the Doppler variation results from the motion of the target and long integration time. With the estimated RA, the Doppler frequency shift compensation is carried out in the LIFT. This method achieves a better and robust detection performance when comparing with the traditional coherent integration method. The simulation results demonstrate the effectiveness and advantages of the proposed processing method.


Author(s):  
Zu-Zhen Huang ◽  
Jia Xu ◽  
Zhi-Rui Wang ◽  
Xiang-Gen Xia ◽  
Teng Long ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document