PDE-Based Non-Linear Anisotropic Diffusion Techniques for Medical Image Denoising

Author(s):  
Zhiwen Cao ◽  
Xuzhen Zhang
2014 ◽  
Vol 1 (2) ◽  
pp. 30-40
Author(s):  
Abha Choubey ◽  
◽  
Dr.G.R. Sinha ◽  
S. K Naik ◽  
◽  
...  

2013 ◽  
Vol 32 (11) ◽  
pp. 3218-3220
Author(s):  
Jin YANG ◽  
Zhi-qin LIU ◽  
Yao-bin WANG ◽  
Xiao-ming GAO

2007 ◽  
Vol 07 (04) ◽  
pp. 663-687 ◽  
Author(s):  
ASHISH KHARE ◽  
UMA SHANKER TIWARY

Wavelet based denoising is an effective way to improve the quality of images. Various methods have been proposed for denoising using real-valued wavelet transform. Complex valued wavelets exist but are rarely used. The complex wavelet transform provides phase information and it is shift invariant in nature. In medical image denoising, both removal of phase incoherency as well as maintaining the phase coherency are needed. This paper is an attempt to explore and apply the complex Daubechies wavelet transform for medical image denoising. We have proposed a method to compute a complex threshold, which does not depend on any assumed model of noise. In this sense this is a "universal" method. The proposed complex-domain shrinkage function depends on mean, variance and median of wavelet coefficients. To test the effectiveness of the proposed method, we have computed the input and output SNR and PSNR of various types of medical images. The method gives an improvement for Gaussian additive, Speckle and Salt-&-Pepper noise as well as for the mixture of these noise types for a range of noisy images with 15 db to 30 db noise levels and outperforms other real-valued wavelet transform based methods. The application of the proposed method to Ultrasound, X-ray and MRI images is demonstrated in the experiments.


2012 ◽  
Vol 9 (4) ◽  
pp. 1493-1511 ◽  
Author(s):  
Huaibin Wang ◽  
Yuanquan Wang ◽  
Wenqi Ren

In this paper, novel second order and fourth order diffusion models are proposed for image denoising. Both models are based on the gradient vector convolution (GVC) model. The second model is coined by incorporating the GVC model into the anisotropic diffusion model and the fourth order one is by introducing the GVC to the You-Kaveh fourth order model. Since the GVC model can be implemented in real time using the FFT and possesses high robustness to noise, both proposed models have many advantages over traditional ones, such as low computational cost, high numerical stability and remarkable denoising effect. Moreover, the proposed fourth order model is an anisotropic filter, so it can obviously improve the ability of edge and texture preserving except for further improvement of denoising. Some experiments are presented to demonstrate the effectiveness of the proposed models.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Quan Yuan ◽  
Zhenyun Peng ◽  
Zhencheng Chen ◽  
Yanke Guo ◽  
Bin Yang ◽  
...  

Medical image information may be polluted by noise in the process of generation and transmission, which will seriously hinder the follow-up image processing and medical diagnosis. In medical images, there is a typical mixed noise composed of additive white Gaussian noise (AWGN) and impulse noise. In the conventional denoising methods, impulse noise is first removed, followed by the elimination of white Gaussian noise (WGN). However, it is difficult to separate the two kinds of noises completely in practical application. The existing denoising algorithm of weight coding based on sparse nonlocal regularization, which can simultaneously remove AWGN and impulse noise, is plagued by the problems of incomplete noise removal and serious loss of details. The denoising algorithm based on sparse representation and low rank constraint can preserve image details better. Thus, a medical image denoising algorithm based on sparse nonlocal regularization weighted coding and low rank constraint is proposed. The denoising effect of the proposed method and the original algorithm on computed tomography (CT) image and magnetic resonance (MR) image are compared. It is revealed that, under different σ and ρ values, the PSNR and FSIM values of CT and MRI images are evidently superior to those of traditional algorithms, suggesting that the algorithm proposed in this work has better denoising effects on medical images than traditional denoising algorithms.


Sign in / Sign up

Export Citation Format

Share Document