Performance comparison of local search operators in differential evolution for constrained numerical optimization problems

Author(s):  
Saul Domınguez-Isidro ◽  
Efren Mezura-Montes ◽  
Guillermo Leguizamon
2013 ◽  
Vol 415 ◽  
pp. 349-352
Author(s):  
Hong Wei Zhao ◽  
Hong Gang Xia

Differential evolution (DE) is a population-based stochastic function minimizer (or maximizer), whose simple yet powerful and straightforward features make it very attractive for numerical optimization. However, DE is easy to trapped into local optima. In this paper, an improved differential evolution algorithm (IDE) proposed to speed the convergence rate of DE and enhance the global search of DE. The IDE employed a new mutation operation and modified crossover operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the scaling factor (F) and the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the IDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and other algorithms (PSO and JADE) that reported in recent literature.


2013 ◽  
Vol 479-480 ◽  
pp. 989-995
Author(s):  
Chun Liang Lu ◽  
Shih Yuan Chiu ◽  
Chih Hsu Hsu ◽  
Shi Jim Yen

In this paper, an improved hybrid Differential Evolution (DE) is proposed to enhance optimization performance by cooperating Dynamic Scaling Mutation (DSM) and Wrapper Local Search (WLS) schemes. When evolution speed is standstill, DSM can improve searching ability to achieve better balance between exploitation and exploration in the search space. Furthermore, WLS can disturb individuals to fine tune the searching range around and then properly find better solutions in the evolution progress. The effective particle encoding representation named Particle Segment Operation-Machine Assignment (PSOMA) that we previously published is also applied to always produce feasible candidate solutions for hybrid DE model to solve the Flexible Job-Shop Scheduling Problem (FJSP). To test the performance of the proposed hybrid method, the experiments contain five frequently used CEC 2005 numerical functions and three representative FJSP benchmarks for single-objective and multi-objective optimization verifications, respectively. Compare the proposed method with the other related published algorithms, the simulation results indicate that our proposed method exhibits better performance for solving most the test functions for single-objective problems. In addition, the wide range of Pareto-optimal solutions and the more Gantt chart diversities can be obtained for the multi-objective FJSP in practical decision-making considerations.


Sign in / Sign up

Export Citation Format

Share Document