Differential Evolution with Novel Local Search Operation for Large Scale Optimization Problems

Author(s):  
Changshou Deng ◽  
Xiaogang Dong ◽  
Yanlin Yang ◽  
Yucheng Tan ◽  
Xujie Tan
Author(s):  
Jie Guo ◽  
Zhong Wan

A new spectral three-term conjugate gradient algorithm in virtue of the Quasi-Newton equation is developed for solving large-scale unconstrained optimization problems. It is proved that the search directions in this algorithm always satisfy a sufficiently descent condition independent of any line search. Global convergence is established for general objective functions if the strong Wolfe line search is used. Numerical experiments are employed to show its high numerical performance in solving large-scale optimization problems. Particularly, the developed algorithm is implemented to solve the 100 benchmark test problems from CUTE with different sizes from 1000 to 10,000, in comparison with some similar ones in the literature. The numerical results demonstrate that our algorithm outperforms the state-of-the-art ones in terms of less CPU time, less number of iteration or less number of function evaluation.


2017 ◽  
Vol 59 ◽  
pp. 340-362 ◽  
Author(s):  
Prabhujit Mohapatra ◽  
Kedar Nath Das ◽  
Santanu Roy

Sign in / Sign up

Export Citation Format

Share Document