An Efficient Cold Start Solution for Recommender Systems Based on Machine Learning and User Interests

Author(s):  
Bilal Hawashin ◽  
Shadi Alzubi ◽  
Ala Mughaid ◽  
Farshad Fotouhi ◽  
Ahmad Abusukhon
2021 ◽  
pp. 002224372110329
Author(s):  
Nicolas Padilla ◽  
Eva Ascarza

The success of Customer Relationship Management (CRM) programs ultimately depends on the firm's ability to identify and leverage differences across customers — a very diffcult task when firms attempt to manage new customers, for whom only the first purchase has been observed. For those customers, the lack of repeated observations poses a structural challenge to inferring unobserved differences across them. This is what we call the “cold start” problem of CRM, whereby companies have difficulties leveraging existing data when they attempt to make inferences about customers at the beginning of their relationship. We propose a solution to the cold start problem by developing a probabilistic machine learning modeling framework that leverages the information collected at the moment of acquisition. The main aspect of the model is that it exibly captures latent dimensions that govern the behaviors observed at acquisition as well as future propensities to buy and to respond to marketing actions using deep exponential families. The model can be integrated with a variety of demand specifications and is exible enough to capture a wide range of heterogeneity structures. We validate our approach in a retail context and empirically demonstrate the model's ability at identifying high-value customers as well as those most sensitive to marketing actions, right after their first purchase.


2016 ◽  
Vol 43 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Mehdi Hosseinzadeh Aghdam ◽  
Morteza Analoui ◽  
Peyman Kabiri

Recommender systems have been widely used for predicting unknown ratings. Collaborative filtering as a recommendation technique uses known ratings for predicting user preferences in the item selection. However, current collaborative filtering methods cannot distinguish malicious users from unknown users. Also, they have serious drawbacks in generating ratings for cold-start users. Trust networks among recommender systems have been proved beneficial to improve the quality and number of predictions. This paper proposes an improved trust-aware recommender system that uses resistive circuits for trust inference. This method uses trust information to produce personalized recommendations. The result of evaluating the proposed method on Epinions dataset shows that this method can significantly improve the accuracy of recommender systems while not reducing the coverage of recommender systems.


Author(s):  
Navin Tatyaba Gopal ◽  
Anish Raj Khobragade

The Knowledge graphs (KGs) catches structured data and relationships among a bunch of entities and items. Generally, constitute an attractive origin of information that can advance the recommender systems. But, present methodologies of this area depend on manual element thus don’t permit for start to end training. This article proposes, Knowledge Graph along with Label Smoothness (KG-LS) to offer better suggestions for the recommender Systems. Our methodology processes user-specific entities by prior application of a function capability that recognizes key KG-relationships for a specific user. In this manner, we change the KG in a specific-user weighted graph followed by application of a graph neural network to process customized entity embedding. To give better preliminary predisposition, label smoothness comes into picture, which places items in the KG which probably going to have identical user significant names/scores. Use of, label smoothness gives regularization above the edge weights thus; we demonstrate that it is comparable to a label propagation plan on the graph. Additionally building-up a productive usage that symbolizes solid adaptability concerning the size of knowledge graph. Experimentation on 4 datasets shows that our strategy beats best in class baselines. This process likewise accomplishes solid execution in cold start situations where user-entity communications remain meager.


Sign in / Sign up

Export Citation Format

Share Document