scholarly journals Optimal solution for the index coding problem using network coding over GF(2)

Author(s):  
Jalaluddin Qureshi ◽  
Chuan Heng Foh ◽  
Jianfei Cai
Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 502
Author(s):  
Tianyang Liu ◽  
Qiang Sun ◽  
Huachun Zhou ◽  
Qi Wei

The problem of network coding resource optimization with a known topological structure is NP-hard. Traditional quantum genetic algorithms have the disadvantages of slow convergence and difficulty in finding the optimal solution when dealing with this problem. To overcome these disadvantages, this paper proposes an adaptive quantum genetic algorithm based on the cooperative mutation of gene number and fitness (GNF-QGA). This GNF-QGA adopts the rotation angle adaptive adjustment mechanism. To avoid excessive illegal individuals, an illegal solution adjustment mechanism is added to the GNF-QGA. A solid demonstration was provided that the proposed algorithm has a fast convergence speed and good optimization capability when solving network coding resource optimization problems.


2018 ◽  
Vol 7 (3) ◽  
pp. 1474
Author(s):  
V Prashanthi ◽  
D Suresh Babu ◽  
C V. Guru Rao

Existing approach of routing protocols had only partial support towards energy efficiency. However, none of them had focused on considering network coding aware routing to reduce energy consumption. Majority of the existing solutions in literature to improve the communication performance of MANET has focused on minimum cost routing protocols. There are very less significant studies towards network coding in performing routing in MANET system. Therefore, it is totally unknown how network coding could be used to solve such issues. Throughput in wireless networks can be enhanced with the help of network coding. This approach also increases network lifetime in the cases of devices running on battery, such as wireless sensor nodes. Additionally, network coding achieves a reduction in the number of transmissions needed for transmission of a specific message through the network by making energy usage more efficient. Despite its benefits, however, network coding can have a negative impact on network lifetime if it is implemented excessively. Initially, to achieve the goal of improving throughput, reducing energy efficiency by reducing the number of broadcasting transmissions, a network coding model is created in this study and the MANET broadcast based on network coding is improved by the heuristic principle of Ant Colony Optimization. This study proposes the application of a network coding based dominating set approach to traditional routing protocols like adhoc on demand distance vector (AODV) as a solution to this issue. Coding gain of different topologies with different offer loads is evaluated using network coding. We discussed the performance of Alice-bob, cross, X, and wheel topologies using network coding. The study has paid particular attention to the trade-off between selection of paths compatible with network coding and network lifetime. The present study addresses this compromise that demonstrates that networks with energy restrictions are incompatible with the current network coding strategies based on throughput. One routing issue is attributed particular importance, namely, reduction of overall energy usage and improvement of individual node lifetime through effective routing of a series of traffic demands over the network. A range of analytical formulations is put forth to generate an optimal solution for the issue of multi-path routing. Results show that, by comparison to solutions without network coding, the suggested solutions improve energy efficiency while at the same time satisfying the specified lifetime restrictions.


2010 ◽  
Vol 56 (7) ◽  
pp. 3187-3195 ◽  
Author(s):  
Salim El Rouayheb ◽  
Alex Sprintson ◽  
Costas Georghiades

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ben Quinton ◽  
Neda Aboutorab

Future distributed data networks are expected to be assisted by users cooperation and coding schemes. Given the explosive increase in the end-users’ demand for download of the content from the servers, in this paper, the implementation of instantly decodable network coding (IDNC) is considered in full-duplex device-to-device (D2D) cooperative fog data networks. In particular, this paper is concerned with designing efficient transmission schemes to offload traffic from the expensive backhaul of network servers by employing IDNC and users cooperation. The generalized framework where users send request for multiple packets and the transmissions are subject to erasure is considered. The optimal problem formulation is presented using the stochastic shortest path (SSP) technique over the IDNC graph with induced subgraphs. However, as the optimal solution suffers from the intractability of being NP-hard, it is not suitable for real-time communications. The complexity of the problem is addressed by presenting a greedy heuristic algorithm used over the proposed graph model. The paper shows that by implementing IDNC in a full-duplex cooperative D2D network model significant reduction in the number of downloads required from the servers can be achieved, which will result in offloading of the backhaul servers and thus saving valuable servers’ resources. It is also shown that the performance of the proposed heuristic algorithm is very close to the optimal solution with much lower computational complexity.


Sign in / Sign up

Export Citation Format

Share Document