Designing reduced-order H-infinity controller via genetic algorithm

Author(s):  
B. Kaji ◽  
G. Chen ◽  
H. Shibata
2013 ◽  
Vol 325-326 ◽  
pp. 1262-1266
Author(s):  
Valentin Pană

The paper presents a compensator design technique for systems with saturating actuators in order to recover as much as possible the performance of the unsaturated case. This anti-windup scheme is obtained using H-infinity optimization methodology. The proposed design approach allows to obtain a anti-windup controller that accounts for time-delays in the control system. Comparative result are presented for the two design methods and time simulation of the nonlinear system are used to analyze the performances of both designs. A reduced order anti-windup controller procedure is also investigated. Keywords: PIO, anti-windup, rate saturation, compensator.


Author(s):  
Sourav Kundu ◽  
Kentaro Kamagata ◽  
Shigeru Sugino ◽  
Takeshi Minowa ◽  
Kazuto Seto

Abstract A Genetic Algorithm (GA) based approach for solution of optimal control design of flexible structures is presented in this paper. The method for modeling flexible structures with distributed parameters as reduced-order models with lumped parameters, which has been developed previously, is employed. Due to some restrictions on controller design it is necessary to make a reduced-order model of the structure. Once the model is established the design of flexible structures is considered as a feedback search procedure where a new solution is assigned some fitness value for the GA and the algorithm iterates till some satisfactory design solution is achieved. We propose a pole assignment method to determine the evaluation (fitness) function to be used by the GA to find optimal damping ratios in passive elements. This paper demonstrates the first results of a genetic algorithm approach to solution of the vibration control problem for practical control applications to flexible tower-like structures.


2005 ◽  
Vol 38 (1) ◽  
pp. 435-440
Author(s):  
M. Zasadzinski ◽  
S. Halabi ◽  
H. Rafaralahy ◽  
H. Souley Ali ◽  
M. Darouach
Keyword(s):  

2011 ◽  
Vol 16 (1) ◽  
pp. 233-247 ◽  
Author(s):  
Witold Stankiewicz ◽  
Robert Roszaka ◽  
Marek Morzyńskia

Low-dimensional models, allowing quick prediction of fluid behaviour, are key enablers of closed-loop flow control. Reduction of the model's dimension and inconsistency of high-fidelity data set and the reduced-order formulation lead to the decrease of accuracy. The quality of Reduced-Order Models might be improved by a calibration procedure. It leads to global optimization problem which consist in minimizing objective function like the prediction error of the model. In this paper, Reduced-Order Models of an incompressible flow around a bluff body are constructed, basing on Galerkin Projection of governing equations onto a space spanned by the most dominant eigenmodes of the Proper Orthogonal Decomposition (POD). Calibration of such models is done by adding to Galerkin System some linear and quadratic terms, which coefficients are estimated using Genetic Algorithm.


Sign in / Sign up

Export Citation Format

Share Document