Spatial Augmented Reality System with functions focused on the rehabilitation of Parkinson’s patients

Author(s):  
Jose Miguel Mota ◽  
Ruben Baena-Perez ◽  
Ivan Ruiz-Rube ◽  
M. Jesus Paredes Duarte ◽  
Antonio Ruiz-Castellanos ◽  
...  
2019 ◽  
Vol 9 (7) ◽  
pp. 1318 ◽  
Author(s):  
YanXiang Zhang ◽  
YiRun Shen ◽  
WeiWei Zhang ◽  
ZiQiang Zhu ◽  
PengFei Ma

In this research, the authors designed an interactive spatial augmented reality system for stage performance based on the technologies of UWB positioning and Bluetooth® triggering. The position of the actor is obtained through the antenna tag carried by the actor and the signal base station placed on the stage. Special effects can be triggered through the Bluetooth® module according to the actor, and rendered at the relevant location on the screen, which has higher concealment. The system has a higher degree of freedom in practical applications, which can present an interactive spatial augmented reality effect, and therefore provide new possibilities for the application of spatial augmented reality in the stage performance.


Author(s):  
Tim Bosch ◽  
Gu van Rhijn ◽  
Frank Krause ◽  
Reinier Könemann ◽  
Ellen S. Wilschut ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3061
Author(s):  
Alice Lo Valvo ◽  
Daniele Croce ◽  
Domenico Garlisi ◽  
Fabrizio Giuliano ◽  
Laura Giarré ◽  
...  

In recent years, we have assisted with an impressive advance in augmented reality systems and computer vision algorithms, based on image processing and artificial intelligence. Thanks to these technologies, mainstream smartphones are able to estimate their own motion in 3D space with high accuracy. In this paper, we exploit such technologies to support the autonomous mobility of people with visual disabilities, identifying pre-defined virtual paths and providing context information, reducing the distance between the digital and real worlds. In particular, we present ARIANNA+, an extension of ARIANNA, a system explicitly designed for visually impaired people for indoor and outdoor localization and navigation. While ARIANNA is based on the assumption that landmarks, such as QR codes, and physical paths (composed of colored tapes, painted lines, or tactile pavings) are deployed in the environment and recognized by the camera of a common smartphone, ARIANNA+ eliminates the need for any physical support thanks to the ARKit library, which we exploit to build a completely virtual path. Moreover, ARIANNA+ adds the possibility for the users to have enhanced interactions with the surrounding environment, through convolutional neural networks (CNNs) trained to recognize objects or buildings and enabling the possibility of accessing contents associated with them. By using a common smartphone as a mediation instrument with the environment, ARIANNA+ leverages augmented reality and machine learning for enhancing physical accessibility. The proposed system allows visually impaired people to easily navigate in indoor and outdoor scenarios simply by loading a previously recorded virtual path and providing automatic guidance along the route, through haptic, speech, and sound feedback.


Sign in / Sign up

Export Citation Format

Share Document