Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 594 ◽  
Author(s):  
Tri Nguyen ◽  
Tien-Dung Nguyen ◽  
Van Nguyen ◽  
Xuan-Qui Pham ◽  
Eui-Nam Huh

By bringing the computation and storage resources close proximity to the mobile network edge, mobile edge computing (MEC) is a key enabling technology for satisfying the Internet of Vehicles (IoV) infotainment applications’ requirements, e.g., video streaming service (VSA). However, the explosive growth of mobile video traffic brings challenges for video streaming providers (VSPs). One known issue is that a huge traffic burden on the vehicular network leads to increasing VSP costs for providing VSA to mobile users (i.e., autonomous vehicles). To address this issue, an efficient resource sharing scheme between underutilized vehicular resources is a promising solution to reduce the cost of serving VSA in the vehicular network. Therefore, we propose a new VSA model based on the lower cost of obtaining data from vehicles and then minimize the VSP’s cost. By using existing data resources from nearby vehicles, our proposal can reduce the cost of providing video service to mobile users. Specifically, we formulate our problem as mixed integer nonlinear programming (MINP) in order to calculate the total payment of the VSP. In addition, we introduce an incentive mechanism to encourage users to rent its resources. Our solution represents a strategy to optimize the VSP serving cost under the quality of service (QoS) requirements. Simulation results demonstrate that our proposed mechanism is possible to achieve up to 21% and 11% cost-savings in terms of the request arrival rate and vehicle speed, in comparison with other existing schemes, respectively.


2021 ◽  
Author(s):  
Zhi Liu ◽  
Cheng Zhan ◽  
Ying Cui ◽  
Celimuge Wu ◽  
Han Hu

<div>Unmanned aerial vehicle (UAV) systems are of increasing interest to academia and industry due to their mobility, flexibility and maneuverability, and are an effective alternative to various uses such as surveillance and mobile edge computing (MEC). However, due to their limited computational and communications resources, it is difficult to serve all computation tasks simultaneously. This article tackles this problem by first proposing a scalable aerial computing solution, which is applicable for computation tasks of multiple quality levels, corresponding to different computation workloads and computation results of distinct performances. It opens up the possibility to maximally improve the overall computing performance with limited computational and communications resources. To meet the demands for timely video analysis that exceed the computing power of a UAV, we propose an aerial video streaming enabled cooperative computing solution namely, UAVideo, which streams videos from a UAV to ground servers. As a complement to scalable aerial computing, UAVideo minimizes the video streaming time under the constraints on UAV trajectory, video features, and communications resources. Simulation results reveal the substantial advantages of the proposed solutions. Besides, we highlight relevant directions for future research.</div>


2021 ◽  
Author(s):  
Zhi Liu ◽  
Cheng Zhan ◽  
Ying Cui ◽  
Celimuge Wu ◽  
Han Hu

<div>Unmanned aerial vehicle (UAV) systems are of increasing interest to academia and industry due to their mobility, flexibility and maneuverability, and are an effective alternative to various uses such as surveillance and mobile edge computing (MEC). However, due to their limited computational and communications resources, it is difficult to serve all computation tasks simultaneously. This article tackles this problem by first proposing a scalable aerial computing solution, which is applicable for computation tasks of multiple quality levels, corresponding to different computation workloads and computation results of distinct performances. It opens up the possibility to maximally improve the overall computing performance with limited computational and communications resources. To meet the demands for timely video analysis that exceed the computing power of a UAV, we propose an aerial video streaming enabled cooperative computing solution namely, UAVideo, which streams videos from a UAV to ground servers. As a complement to scalable aerial computing, UAVideo minimizes the video streaming time under the constraints on UAV trajectory, video features, and communications resources. Simulation results reveal the substantial advantages of the proposed solutions. Besides, we highlight relevant directions for future research.</div>


Author(s):  
Stefano Salsano ◽  
Luca Chiaraviglio ◽  
Nicola Blefari-Melazzi ◽  
Carlos Parada ◽  
Francisco Fontes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document