Local Motion Planning for Ground Mobile Robots via Deep Imitation Learning

Author(s):  
Khaled Saleh ◽  
Mohamed Attia ◽  
Mohammed Hossny ◽  
Samer Hanoun ◽  
Syed Salaken ◽  
...  
Robotica ◽  
2014 ◽  
Vol 32 (7) ◽  
pp. 1101-1123 ◽  
Author(s):  
Ellips Masehian ◽  
Hossein Kakahaji

SUMMARYIn this paper, a new sensor-based approach called nonholonomic random replanner (NRR) is presented for motion planning of car-like mobile robots. The robot is incrementally directed toward its destination using a nonholonomic rapidly exploring random tree (RRT) algorithm. At each iteration, the robot's perceived map of the environment is updated using sensor readings and is used for local motion planning. If the goal was not visible to the robot, an approximate path toward the goal is calculated and the robot traces it to an extent within its sensor range. The robot updates its motion to goal through replanning. This procedure is repeated until the goal lies within the scope of the robot, after which it finds a more precise path by sampling in a tighter Goal Region for the nonholonomic RRT. Three main replanning strategies are proposed to decide when to perform a visibility scan and when to replan a new path. Those are named Basic, Deliberative and Greedy strategies, which yield different paths. The NRR was also modified for motion planning of Dubin's car-like robots. The proposed algorithm is probabilistically complete and its effectiveness and efficiency were tested by running several simulations and the resulting runtimes and path lengths were compared to the basic RRT method.


Author(s):  
Wangwang Zhu ◽  
Xi Zhang ◽  
Baixuan Zhao ◽  
Shiwei Peng ◽  
Pengfei Guo ◽  
...  

Robotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 96
Author(s):  
Yankai Wang ◽  
Qiaoling Du ◽  
Tianhe Zhang ◽  
Chengze Xue

Hybrid mobile robots with two motion modes of a wheeled vehicle and truss structure with the ability to climb poles have significant flexibility. The motion planning of this kind of robot on a pole has been widely studied, but few studies have focused on the transition of the robot from the ground to the pole. In this study, a locomotion strategy of wheeled-legged pole-climbing robots (the WL_PCR) is proposed to solve the problem of ground-to-pole transition. By analyzing the force of static and dynamic process in the ground-to-pole transition, the condition of torque provided by the gripper and moving joint is proposed. The mathematical expression of Centre of Mass (CoM) of the wheeled-legged pole-climbing robots is utilized, and the conditions for the robot to smoothly transition from the ground to the vertical pole are proposed. Finally, the feasibility of this method is proved by the simulation and experimentation of a locomotion strategy on wheeled-legged pole-climbing robots.


Robotics ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 20 ◽  
Author(s):  
A poorva ◽  
Rahul Gautam ◽  
Rahul Kala

2002 ◽  
Vol 68 (665) ◽  
pp. 165-172
Author(s):  
Atsushi YAMASHITA ◽  
Masaki FUKUCHI ◽  
Jun OTA ◽  
Tamio ARAI ◽  
Hajime ASAMA

2021 ◽  
Author(s):  
Xuehao Sun ◽  
Shuchao Deng ◽  
Baohong Tong ◽  
Shuang Wang ◽  
Shuai Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document