scholarly journals An Ensemble Deep Convolutional Neural Network Model for Electricity Theft Detection in Smart Grids

Author(s):  
Hossein Mohammadi Rouzbahani ◽  
Hadis Karimipour ◽  
Lei Lei
Author(s):  
Kun Xu ◽  
Shunming Li ◽  
Jinrui Wang ◽  
Zenghui An ◽  
Yu Xin

Deep learning method is gradually applied in the field of mechanical equipment fault diagnosis because it can learn complex and useful features automatically from the vibration signals. Among the many intelligent diagnostic models, convolutional neural network has been gradually applied to intelligent fault diagnosis of bearings due to its advantages of local connection and weight sharing. However, there are still some drawbacks. (1) The training process of convolutional neural network is slow and unstable. It has more training parameters. (2) It cannot perform well under different working conditions, such as noisy environment and different workloads. In this paper, a novel model named adaptive and fast convolutional neural network with wide receptive field is presented to overcome the aforementioned deficiencies. The prime innovations include the following. First, a deep convolutional neural network architecture is constructed using the scaled exponential linear unit activation function and global average pooling. The model has fewer training parameters and can converge rapidly and stably. Second, the model has a wide receptive field with two medium and three small length convolutional kernels. It also has high diagnostic accuracy and robustness when the environment is noisy and workloads are changed compared with other models. Furthermore, to demonstrate how the wide receptive field convolutional neural network model works, the reasons for high model performance are analyzed and the learned features are also visualized. Finally, the wide receptive field convolutional neural network model is verified by the vibration dataset collected in the background of high noise, and the results indicate that it has high diagnostic performance.


2020 ◽  
Author(s):  
Zicheng Hu ◽  
Alice Tang ◽  
Jaiveer Singh ◽  
Sanchita Bhattacharya ◽  
Atul J. Butte

AbstractCytometry technologies are essential tools for immunology research, providing high-throughput measurements of the immune cells at the single-cell level. Traditional approaches in interpreting and using cytometry measurements include manual or automated gating to identify cell subsets from the cytometry data, providing highly intuitive results but may lead to significant information loss, in that additional details in measured or correlated cell signals might be missed. In this study, we propose and test a deep convolutional neural network for analyzing cytometry data in an end-to-end fashion, allowing a direct association between raw cytometry data and the clinical outcome of interest. Using nine large CyTOF studies from the open-access ImmPort database, we demonstrated that the deep convolutional neural network model can accurately diagnose the latent cytomegalovirus (CMV) in healthy individuals, even when using highly heterogeneous data from different studies. In addition, we developed a permutation-based method for interpreting the deep convolutional neural network model and identified a CD27-CD94+ CD8+ T cell population significantly associated with latent CMV infection. Finally, we provide a tutorial for creating, training and interpreting the tailored deep learning model for cytometry data using Keras and TensorFlow (github.com/hzc363/DeepLearningCyTOF).


2021 ◽  
Vol 20 ◽  
pp. 182-188
Author(s):  
Vanita Agrawal ◽  
Pradyut K. Goswami ◽  
Kandarpa K. Sarma

Short-Term Load Forecasting for buildings has gained a lot of importance in recent times due to the ongoing penetration of renewable energy and the upgradation of power system networks to Smart Grids embedded with smart meters. Power System expansion is not able to keep pace with the energy consumption demands. In this scenario, accurate household energy forecasting is one of the key solutions to managing the demand side energy. Even a small percentage of improvement in forecasting error, translates to a lot of saving for both producers and consumers. In this paper, it was found out that Aggregated 1-Dimensional Convolutional Neural Networks can be effectively modeled to predict the household consumption with greater accuracy than a basic 1-Dimensional Convolutional Neural Network model or a classical Auto Regressive Integrated Moving Average model. The proposed Aggregated Convolutional Neural Network model was tested on a 4 year household energy consumption dataset and gave very promising Root Mean Square Error reduction


Sign in / Sign up

Export Citation Format

Share Document