Real-Time Distributed Ensemble Learning for Fault Detection of an Unmanned Ground Vehicle

Author(s):  
Conor Wallace ◽  
Sean Ackels ◽  
Patrick Benavidez ◽  
Mo Jamshidi
2007 ◽  
Author(s):  
Holger M. Jaenisch ◽  
James W. Handley ◽  
Michael L. Hicklen

2018 ◽  
Vol 24 (4) ◽  
pp. 354-360
Author(s):  
Hajun Song ◽  
Jong-Boo Han ◽  
Hyosung Hong ◽  
Samuel Jung ◽  
Sung-Soo Kim ◽  
...  

2010 ◽  
Vol 2010.5 (0) ◽  
pp. _59225-1_-_59225-8_
Author(s):  
Jong Seok Lee ◽  
Jae Yi Oh ◽  
Yeo Giel Yoon ◽  
Ju Yong Kang ◽  
Won Gun Kim ◽  
...  

Author(s):  
Andrew Eick ◽  
David Bevly

Rough, off-road terrain contains multiple hazards for an unmanned ground vehicle (UGV). In this paper, hazards are classified into three groups: obstacles, rough traversable terrain, and rough untraversable terrain. These three types of hazards create a rollover risk for a UGV. A nonlinear model predictive controller (NMPC) that is capable of navigating a UGV through these hazards is presented. The control algorithm features a nonlinear tire model which more accurately captures the dynamics of the UGV when compared to a linearized tire model, and has a fast enough run time for real time implementation. On an actual vehicle, the UGV is assumed to be equipped with a perception based sensor, such as a Light Detection And Ranging (LiDAR) unit, to provide information of the terrain roughness, grade, and elevation. This information is used by the NMPC to safely control the vehicle to a target location. However, for the purposes of this paper, control inputs and terrain are simulated in Car-Sim [1], and the feasibility of real time implementation is investigated.


2020 ◽  
Vol 14 (17) ◽  
pp. 4690-4700
Author(s):  
Jie Li ◽  
Sheng Zhang ◽  
Kai Han ◽  
Xia Yuan ◽  
Chunxia Zhao ◽  
...  

2015 ◽  
Vol 220-221 ◽  
pp. 934-939 ◽  
Author(s):  
Eero Väljaots ◽  
Raivo Sell ◽  
Mati Kaeeli

The paper investigates the data acquisition method and a system of wheeled mobile unmanned ground vehicles (UGV) for characterization and optimization of motion and energy efficiency. This enables to conduct real-time and conditional field tests. The obtained results are used for an advanced methodology framework for robotic design targeted on the development, simulation and testing of vehicle platforms along the entire design process.


Sign in / Sign up

Export Citation Format

Share Document