fault detection and identification
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 89)

H-INDEX

30
(FIVE YEARS 6)

Author(s):  
Jing Wang ◽  
Jinglin Zhou ◽  
Xiaolu Chen

AbstractEnsuring the safety of industrial systems requires not only detecting the faults, but also locating them so that they can be eliminated. The previous chapters have discussed the fault detection and identification methods. Fault traceability is also an important issue in industrial system. This chapter and Chap. 10.1007/978-981-16-8044-1_14 aim at the fault inference and root tracking based on the probabilistic graphical model. This model explores the internal linkages of system variables quantitatively and qualitatively, so it avoids the bottleneck of multivariate statistical model without clear mechanism. The exacted features or principle components of multivariate statistical model are linear or nonlinear combinations of system variables and have not any physical meaning. So the multivariate statistical model is good at fault detection and identification, but not at fault root tracking.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2888
Author(s):  
Ahmed R. Nasser ◽  
Ahmad Taher Azar ◽  
Amjad J. Humaidi ◽  
Ammar K. Al-Mhdawi ◽  
Ibraheem Kasim Ibraheem

Analog electronic circuits play an essential role in many industrial applications and control systems. The traditional way of diagnosing failures in such circuits can be an inaccurate and time-consuming process; therefore, it can affect the industrial outcome negatively. In this paper, an intelligent fault diagnosis and identification approach for analog electronic circuits is proposed and investigated. The proposed method relies on a simple statistical analysis approach of the frequency response of the analog circuit and a simple rule-based fuzzy logic classification model to detect and identify the faulty component in the circuit. The proposed approach is tested and evaluated using a commonly used low-pass filter circuit. The test result of the presented approach shows that it can identify the fault and detect the faulty component in the circuit with an average of 98% F-score accuracy. The proposed approach shows comparable performance to more intricate related works.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5865
Author(s):  
Widagdo Purbowaskito ◽  
Chen-Yang Lan ◽  
Kenny Fuh

A novel framework of model-based fault detection and identification (MFDI) for induction motor (IM)-driven rotating machinery (RM) is proposed in this study. A data-driven subspace identification (SID) algorithm is employed to obtain the IM state-space model from the voltage and current signals in a quasi-steady-state condition. This study aims to improve the frequency–domain fault detection and identification (FDI) by replacing the current signal with a residual signal where a thresholding method is applied to the residual signal. Through the residual spectrum and threshold comparison, a binary decision is made to find fault signatures in the spectrum. The statistical Q-function is used to generate the fault frequency band to distinguish between the fault signature and the noise signature. The experiment in this study is performed on a wastewater pump in an existing industrial facility to verify the proposed FDI. Two faulty conditions with mathematically known and mathematically unknown faulty signatures are experimented with and diagnosed. The study results present that the residual spectrum demonstrated to be more sensitive to fault signatures compare to the current spectrum. The proposed FDI has successfully shown to identify the fault signatures even for the mathematically unknown faulty signatures.


2021 ◽  
Vol 3 ◽  
Author(s):  
Prasadraju Lakkamraju ◽  
Madhu Anumukonda ◽  
Shubhajit Roy Chowdhury

The study presents a novel design method that improves system availability using fault-tolerant features in a non-invasive medical diagnostic system. This approach addresses the effective detection of functional faults, improves the uninterruptible system operating period with reduced false alarms, and provides an authentic measure of vital cardiac signs using diverse multimodal sensing elements like the photoplethysmogram (PPG) and the ECG. Most systems rely on a 1oo1 (one-out-of-one) design method, which inherently limits accuracy in existing practice. In this proposed approach, the quality of segregated authentic vital sign measured values could tremendously benefit the performance of resourceful nursing with negligible alarm fatigue and predict illness more accurately. The system builds upon the selected 2oo2 (two-out-of-two) safety-related design architecture and is evaluated with implemented functions like the fault detection and identification logic, the correlation coefficient-based safety function, and the fault-tolerant safe degradation switching mechanism for accurate measurements. The system was tested on 50 adults of various age groups. The analyzed captured data showed highly accurate vital sign data in this fault-tolerant approach with reduced false alarms. The proposed design method evaluated safety-related mechanisms along with a combination of the same and diverse sensors in a medical monitoring device, showing more reliable functioning of the system and authentic data for better nursing. This design approach showed a 45–55% increased improvement in system availability, thus allowing for accurate and uninterruptable tracking of vital signs for better nursing during critical times in the ICU.


Sign in / Sign up

Export Citation Format

Share Document