Dynamic stress concentration factor around inclusion in anisotropic half-space with a semi-cylindrical canyon

Author(s):  
Yu Zhang ◽  
Jin Wang ◽  
Yu-xuan Wei ◽  
Pei-lei Yan ◽  
Zai-lin Yang
2011 ◽  
Vol 27 (1) ◽  
pp. 37-45 ◽  
Author(s):  
H. Qi ◽  
J. Yang ◽  
Y. Shi

ABSTRACTGreen's function and complex function methods are used here to investigate the problem of the scattering of SH-wave by a cylindrical inclusion near interface in bi-material half-space. Firstly, Green's function was constructed which was an essential solution of displacement field for an elastic right-angle space possessing a cylindrical inclusion while bearing out-of-plane harmonic line source load at any point of its vertical boundary. Secondly, the bi-material media was divided into two parts along the vertical interface using the idea of interface “conjunction”, then undetermined anti-plane forces were loaded at the linking sections respectively to satisfy continuity conditions, and a series of Fredholm integral equations of first kind for determining the unknown forces could be set up through continuity conditions on surface. Finally, some examples for dynamic stress concentration factor of the cylindrical elastic inclusion are given. Numerical results show that dynamic stress concentration factor is influenced by interfaces, free boundary and combination of different media parameters.


2013 ◽  
Vol 639-640 ◽  
pp. 648-651
Author(s):  
You Ping Liu

According to the Biot wave theory and the complex function combined with multi coordinate method, seismic wave dynamic response of underground holes in the half space saturated soil is studied. Given P wave on two circular holes of the dynamic stress concentration factor of the numerical results, the distribution situations of the dynamic stress concentration factors are discussed with the variation of the hole spacing, incidence angle and the dimensionless wave number. The results show that, the effect of the underground hole spacing to the interaction effects of the holes is obvious. When the hole spacing reaches up to 6 times the radius of the hole, the peak value of the dynamic stress concentration factor decreases obviously, and the peripheral distribution of offset is weakened. With increasing of the incident angle, the hole peripheral stress concentration coefficient showed the trend of first increasing then decreasing, distribution also occurs at certain angle deflection. In low frequency waves, the hole stress peak value will influence mutually more, while in the high frequency input, interaction between holes will reduce.


2009 ◽  
Vol 419-420 ◽  
pp. 825-828
Author(s):  
Xue Yi Zhang ◽  
Guang Ping Zou ◽  
Hong Liang Li

Sacttering of SH-wave of combined deffectiveness which included single circular cavity and double linear cracks in elastic medium was investigated in detail. Analytic solution of this problem was obtained by Green’s Function method and idea of crack-division at actual position of crack at two times. There were two key steps of this method. First step was to employ a special Green’s Function which was a fundamental solution of displacement field for an elastic space with a cavity in it subjected to out-of-plane harmonic line source force at any point at first. The sceond step was crack-division which was artificially to produce a crack by apllying opposite shear stress caused by incident SH-wave. Distribution of dynamic stress concentration factor (DSCF) at edge of cavity was studied by numerical analysis. Distribution Curves of DSCF of three models were plotted by numerical method in polar coordinate system. Three models were one circular cavity and without crack, one circular cavity and single crack and single circular cavity double cracks. The results were compared and discussed in different incident angle of SH-wave.Conclusion was that the interaction among SH-wave, single cavity and double crack was obvious. Dynamic stress concentration factor varied with angle and distance between cavity and crack.


2012 ◽  
Vol 446-449 ◽  
pp. 2317-2320 ◽  
Author(s):  
Min Huang ◽  
Bing Yu Pan

A series solution for dynamic stress concentration of underground lined cavities in different distance under incident plane SV waves is given by wave function expansion method. The infinite series is cut and calculated under the required precision. The lining includes rigid lining, unlined cavities, flexible lining. The numerical results show that the distance between cavities has an important impact on the dynamic stress concentration factor and the interaction between two cavities greatly amplifies the dynamic stress concentration. With the distance increases the dynamic stress concentration factor turn smaller gradually and tend to the distribution case of one cavity; The rigidity of lining also has great effect on the dynamic stress concentration which is highest for the rigid lining, second for unlined cavities and is lowest for the flexible lining.


Sign in / Sign up

Export Citation Format

Share Document