Global Optimal Path Planning for Multi-agent Flocking: A Multi-Objective Optimization Approach with NSGA-III

Author(s):  
Adarsh Kesireddy ◽  
Wanliang Shan ◽  
Hao Xu
2018 ◽  
Vol 232 ◽  
pp. 03052 ◽  
Author(s):  
Chengwei He ◽  
Jian Mao

Using the traditional Ant Colony Algorithm for AGV path planning is easy to fall into the local optimal solution and lacking the capability of obstacle avoidance in the complex storage environment. In this paper, by constructing the MAKLINK undirected network routes and the heuristic function is optimized in the Ant Colony Algorithm, then the AGV path reaches the global optimal path and has the ability to avoid obstacles. According to research, the improved Ant Colony Algorithm proposed in this paper is superior to the traditional Ant Colony Algorithm in terms of convergence speed and the distance of optimal path planning.


Author(s):  
Clifford A. Whitfield

A multi-objective technique for unmanned air vehicle path-planning generation through task allocation has been developed. The dual-optimal path-planning technique generates real-time adaptive flight paths based on available flight windows and environmental influenced objectives. The environmentally-influenced flight condition determines the aircraft optimal orientation within a downstream virtual window of possible vehicle destinations that is based on the vehicle’s kinematics. The intermittent results are then pursued by a dynamic optimization technique to determine the flight path. This path-planning technique is a multi-objective optimization procedure consisting of two goals that do not require additional information to combine the conflicting objectives into a single-objective. The technique was applied to solar-regenerative high altitude long endurance flight which can benefit significantly from an adaptive real-time path-planning technique. The objectives were to determine the minimum power required flight paths while maintaining maximum solar power for continual surveillance over an area of interest (AOI). The simulated path generation technique prolonged the flight duration over a sustained turn loiter flight path by approximately 2 months for a year of flight. The potential for prolonged solar powered flight was consistent for all latitude locations, including 2 months of available flight at 60° latitude, where sustained turn flight was no longer capable.


Sign in / Sign up

Export Citation Format

Share Document