local optimal solution
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 51)

H-INDEX

7
(FIVE YEARS 3)

2022 ◽  
Vol 355 ◽  
pp. 03002
Author(s):  
Hongchao Zhao ◽  
Jianzhong Zhao

Aiming at the problems of long search time and local optimal solution of ant colony algorithm (ACA) in the path planning of unmanned aerial vehicle (UAV), an improved ant colony algorithm (IACA) was proposed from the aspects of simplicity and effectiveness. The flight performance constraints of fixed wing UAVs were treated as conditions of judging whether the candidate expanded nodes are feasible, thus the feasible nodes’ number was reduced and the search efficiency was effectively raised. In order to overcome the problem of local optimal solution, the pheromone update rule is improved by combining local pheromone update and global pheromone update. The heuristic function was improved by integrating the distance heuristic factor with the safety heuristic factor, and it enhanced the UAV flight safety performance. The transfer probability was improved to increase the IACA search speed. Simulation results show that the proposed IACA possesses stronger global search ability and higher practicability than the former IACA.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
He Tian ◽  
Guoqiang Wang ◽  
Kangkang Sun ◽  
Zeren Chen ◽  
Chuliang Yan ◽  
...  

Dynamic unbalance force is an important factor affecting the service life of scrap metal shredders (SMSs) as the product of mass error. Due to the complexity of hammerheads arrangement, it is difficult to take all the parts of the hammerhead into account in the traditional methods. A novel optimization algorithm combining genetic algorithm and simulated annealing algorithm is proposed to improve the dynamic balance of scrap metal shredders. The optimization of hammerheads and fenders on SMS in this paper is considered as a multiple traveling salesman problem (MTSP), which is a kind of NP-hard problem. To solve this problem, an improved genetic algorithm (IGA) combined with the global optimization characteristics of genetic algorithm (GA) and the local optimal solution of simulated annealing algorithm (SA) is proposed in this paper, which adopts SA in the process of selecting subpopulations. The optimization results show that the resultant force of the shredder central shaft by using IGA is less than the traditional metaheuristic algorithm, which greatly improves the dynamic balance of the SMS. Validated via ADAMS simulation, the results are in good agreement with the theoretical optimization analysis.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Zhipeng Huang ◽  
Haishan Huang ◽  
Runming Shi ◽  
Xu Li ◽  
Xuan Zhang ◽  
...  

With several divided stages, placement and routing are the most critical and challenging steps in VLSI physical design. To ensure that physical implementation problems can be manageable and converged in a reasonable runtime, placement/routing problems are usually further split into several sub-problems, which may cause conservative margin reservation and mis-correlation. Therefore, it is desirable to design an algorithm that can accurately and efficiently consider placement and routing simultaneously. In this paper, we propose a detailed placement and global routing co-optimization algorithm while considering complex routing constraints to avoid conservative margin reservation and mis-correlation in placement/routing stages. Firstly, we present a rapidly preprocessing technology based on R-tree to improve the initial routing results. After that, a BFS-based approximate optimal addressing algorithm in 3D is designed to find a proper destination for cell movement. We propose an optimal region selection algorithm based on the partial routing solution to jump out of the local optimal solution. Further, a fast partial net rip-up and rerouted algorithm is used in the process of cell movement. Finally, we adopt an efficient refinement technique to reduce the routing length further. Compared with the top 3 winners according to the 2020 ICCAD CAD contest benchmarks, the experimental results show that our algorithm achieves the best routing length reduction for all cases with a shorter runtime. On average, our algorithm can improve 0.7%, 1.5%, and 1.7% for the first, second, and third place, respectively. In addition, we can still obtain the best results after relaxing the maximum cell movement constraint, which further illustrates the effectiveness of our algorithm.


2021 ◽  
Vol 14 (1) ◽  
pp. 188
Author(s):  
Meiping Li ◽  
Xiaoming Xie ◽  
Du Zhang

Electricity loads are basic and important information for power generation facilities and traders, especially in terms of production plans, daily operations, unit commitments, and economic dispatches. Short-term load forecasting (STLF), which predicts power loads for a few days, plays a vital role in the reliable, safe, and efficient operation of a power system. Currently, two main challenges are faced by existing STLF prediction models. The first involves how to fuse multiscale electricity load data to obtain a high-performance model and remove data noise after integration. The second involves how to improve the local optimal solution despite the sample quality problem. To address the above issues, this paper proposes a multiscale electricity load data fusion- and STLF-based short time series prediction model built on a sparse deep autoencoder and self-paced learning (SPL). A sparse deep autoencoder was used to solve the multiscale data fusion problem with data noise. Furthermore, SPL was utilized to solve the local optimal solution problem. The experimental results showed that our model was better than the existing STLF prediction models by more than 15.89% in terms of the mean squared error (MSE) indicator.


2021 ◽  
Vol 2021 ◽  
pp. 1-31
Author(s):  
Shaoqiang Yan ◽  
Ping Yang ◽  
Donglin Zhu ◽  
Wanli Zheng ◽  
Fengxuan Wu

This paper solves the shortcomings of sparrow search algorithm in poor utilization to the current individual and lack of effective search, improves its search performance, achieves good results on 23 basic benchmark functions and CEC 2017, and effectively improves the problem that the algorithm falls into local optimal solution and has low search accuracy. This paper proposes an improved sparrow search algorithm based on iterative local search (ISSA). In the global search phase of the followers, the variable helix factor is introduced, which makes full use of the individual’s opposite solution about the origin, reduces the number of individuals beyond the boundary, and ensures the algorithm has a detailed and flexible search ability. In the local search phase of the followers, an improved iterative local search strategy is adopted to increase the search accuracy and prevent the omission of the optimal solution. By adding the dimension by dimension lens learning strategy to scouters, the search range is more flexible and helps jump out of the local optimal solution by changing the focusing ability of the lens and the dynamic boundary of each dimension. Finally, the boundary control is improved to effectively utilize the individuals beyond the boundary while retaining the randomness of the individuals. The ISSA is compared with PSO, SCA, GWO, WOA, MWOA, SSA, BSSA, CSSA, and LSSA on 23 basic functions to verify the optimization performance of the algorithm. In addition, in order to further verify the optimization performance of the algorithm when the optimal solution is not 0, the above algorithms are compared in CEC 2017 test function. The simulation results show that the ISSA has good universality. Finally, this paper applies ISSA to PID parameter tuning and robot path planning, and the results show that the algorithm has good practicability and effect.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012006
Author(s):  
Ya Shen ◽  
Chen Zhang ◽  
Xu Bai ◽  
ChongQing Zhang

Abstract An ameliorative cultural algorithm (CA) based on particle swarm optimization (PSO) and whale optimization algorithm (WOA) is raised (CA-PSOWOA), so as to conquer the defects of WOA and PSO, such as poor global exploration ability and easy fall into local optimal solution. Firstly, a nonlinear inertia weight strategy is leaded to optimize the PSO and WOA, then CA is introduced to regulate the ability of global exploration and local exploitation of PSO and WOA. By testing on benchmark functions, it is proved that CA-PSOWOA improves the global exploration ability and solution accuracy, and its performance is better than the traditional PSO and WOA, and other algorithms.


2021 ◽  
Vol 11 (21) ◽  
pp. 9866
Author(s):  
Hongmei Wang ◽  
Yinchun Wang ◽  
Meng Wu

Relay communication is emerging as a promising solution to improving the reliability of long-distance communication systems. However, transmitting data in a secure way is challenging due to the possibility of eavesdroppers wiretapping such systems. To address the challenge, this paper proposes a joint secure transmission and graph mobility model. With the proposed model, the secrecy rate of the resource-constrained two-way wiretap channel mobile relay system is formulated as a mixed integer nonlinear programming (MINLP) problem. Furthermore, efficient algorithms that achieve a local optimal solution are derived. Numerical results are provided to validate the performance of the proposed algorithms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Yang

Music plays an extremely important role in people’s production and life. The amount of music is growing rapidly. At the same time, the demand for music organization, classification, and retrieval is also increasing. Paying more attention to the emotional expression of creators and the psychological characteristics of music are also indispensable personalized needs of users. The existing music emotion recognition (MER) methods have the following two challenges. First, the emotional color conveyed by the first music is constantly changing with the playback of the music, and it is difficult to accurately express the ups and downs of music emotion based on the analysis of the entire music. Second, it is difficult to analyze music emotions based on the pitch, length, and intensity of the notes, which can hardly reflect the soul and connotation of music. In this paper, an improved back propagation (BP) algorithm neural network is used to analyze music data. Because the traditional BP network tends to fall into local solutions, the selection of initial weights and thresholds directly affects the training effect. This paper introduces artificial bee colony (ABC) algorithm to improve the structure of BP neural network. The output value of the ABC algorithm is used as the weight and threshold of the BP neural network. The ABC algorithm is responsible for adjusting the weights and thresholds, and feeds back the optimal weights and thresholds to the BP neural network system. BP neural network with ABC algorithm can improve the global search ability of the BP network, while reducing the probability of the BP network falling into the local optimal solution, and the convergence speed is faster. Through experiments on public music data sets, the experimental results show that compared with other comparative models, the MER method used in this paper has better recognition effect and faster recognition speed.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Ruo-Bin Wang ◽  
Wei-Feng Wang ◽  
Lin Xu ◽  
Jeng-Shyang Pan ◽  
Shu-Chuan Chu

Path planning is one of the hotspots in the research of automotive engineering. Aiming at the issue of robot path planning with the goal of finding a collision-free optimal motion path in an environment with barriers, this study proposes an adaptive parallel arithmetic optimization algorithm (APAOA) with a novel parallel communication strategy. Comparisons with other popular algorithms on 18 benchmark functions are committed. Experimental results show that the proposed algorithm performs better in terms of solution accuracy and convergence speed, and the proposed strategy can prevent the algorithm from falling into a local optimal solution. Finally, we apply APAOA to solve the problem of robot path planning.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Honglei Zhu ◽  
Yingying Zhao ◽  
Xueyun Wang ◽  
Yulong Xu

Medical data analysis is an important part of intelligent medicine, and clustering analysis is a commonly used method for data analysis of Traditional Chinese Medicine (TCM); however, the classical K-Means algorithm is greatly affected by the selection of initial clustering center, which is easy to fall into the local optimal solution. To avoid this problem, an improved differential evolution clustering algorithm is proposed in this paper. The proposed algorithm selects the initial clustering center randomly, optimizes and locates the clustering center in the process of evolution iteration, and improves the mutation mode of differential evolution to enhance the overall optimization ability, so that the clustering effect can reach the global optimization as far as possible. Three University of California, Irvine (UCI), data sets are selected to compare the clustering effect of the classical K-Means algorithm, the standard DE-K-Means algorithm, the K-Means++ algorithm, and the proposed algorithm. The experimental results show that, in terms of global optimization, the proposed algorithm is obviously superior to the other three algorithms, and in terms of convergence speed, the proposed algorithm is better than DE-K-Means algorithm. Finally, the proposed algorithm is applied to analyze the drug data of Traditional Chinese Medicine in the treatment of pulmonary diseases, and the analysis results are consistent with the theory of Traditional Chinese Medicine.


Sign in / Sign up

Export Citation Format

Share Document