moving obstacle
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 38)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Huckleberry Febbo ◽  
Paramsothy Jayakumar ◽  
Jeffrey L. Stein ◽  
Tulga Ersal

Abstract Safe trajectory planning for high-performance automated vehicles in an environment with both static and moving obstacles is a challenging problem. Part of the challenge is developing a formulation that can be solved in real-time while including the following set of specifications: minimum time-to-goal, a dynamic vehicle model, minimum control effort, both static and moving obstacle avoidance, simultaneous optimization of speed and steering, and a short execution horizon. This paper presents a nonlinear model predictive control-based trajectory planning formulation, tailored for a large, high-speed unmanned ground vehicle, that includes the above set of specifications. The ability to solve this formulation in real-time is evaluated using NLOptControl, an open-source, direct-collocation based, optimal control problem solver in conjunction with the KNITRO nonlinear programming problem solver. The formulation is tested with various sets of the specifications. A parametric study relating execution horizon and obstacle speed indicates that the moving obstacle avoidance specification is not needed for safety when the planner has a small execution horizon and the obstacles are moving slowly. However, a moving obstacle avoidance specification is needed when the obstacles are moving faster, and this specification improves the overall safety without, in most cases, increasing the solve-times. The results indicate that (i) safe trajectory planners for high-performance automated vehicles should include the entire set of specifications mentioned above, unless a static or low-speed environment permits a less comprehensive planner; and (ii) the resulting formulation can be solved in real-time.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8147
Author(s):  
Ionuț Vasile ◽  
Emil Tudor ◽  
Ion-Cătălin Sburlan ◽  
Marius-Alin Gheți ◽  
Gabriel Popa

LiDAR sensors are needed for use in vehicular applications, particularly due to their good behavior in low-light environments, as they represent a possible solution for the safety systems of vehicles that have a long braking distance, such as trams. The testing of long-range LiDAR dynamic responses is very important for vehicle applications because of the presence of difficult operation conditions, such as different weather conditions or fake targets between the sensor and the tracked vehicle. The goal of the authors in this paper was to develop an experimental model for indoor testing, using a scaled vehicle that can measure the distances and the speeds relative to a fixed or a moving obstacle. This model, containing a LiDAR sensor, was developed to operate at variable speeds, at which the software functions were validated by repeated tests. Once the software procedures are validated, they can be applied on the full-scale model. The findings of this research include the validation of the frontal distance and relative speed measurement methodology, in addition to the validation of the independence of the measurements to the color of the obstacle and to the ambient light.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Song ◽  
Yu Mo ◽  
Shiping Feng ◽  
Shi-Jie Yang

Dark solitons dynamically generated from a potential moving in a one-dimensional Bose-Einstein condensate are displayed. Based on numerical simulations of the Gross-Pitaevskii equation, we find that the moving obstacle successively emits a series of solitons which propagate at constant speeds. The dependence of soliton emission on the system parameters is examined. The formation mechanism of solitons is interpreted as interference between a diffusing wavepacket and the condensate background, enhanced by the nonlinear interactions.PACS numbers: 03.75.Mn, 03.75.Lm, 05.30.Jp


2021 ◽  
Author(s):  
Shihao Wang ◽  
Zheng Ma ◽  
Ying Li ◽  
Chao Yang ◽  
Weida Wang ◽  
...  

Author(s):  
Seiji Aoyagi ◽  
Nobuhito Sato ◽  
Kyosuke Yamamoto ◽  
Tomokazu Takahashi ◽  
Masato Suzuki

Author(s):  
Jiajun Xu ◽  
Kyoung-Su Park

Abstract In the past decades, cable-driven parallel robots (CDPRs) have been proven the extraordinary performance for various applications. However, the multiple cables lead the robot easy to interfere with environments. Especially the large workspace of CDPR may introduce unknown moving obstacles. In this study, a sampling-based path planning method is presented for a CDPR to find the collision-free path in the presence of the moving obstacle. The suggested method is based on rapidly exploring random tree (RRT) algorithm which gives CDPRs advantages to handle complex constraints such as cable collision and dynamic feasible workspace (DFW). Moreover, we conduct the forward simulation to check the feasibility in a closed-loop system. The moving parts of both CDPRs and the moving obstacle are assumed as convex bodies, so that Gilbert-Johnson-Keerthi (GJK) algorithm is adopted to detect collision in real-time. Finally, the related simulation is carried out to illustrate the algorithm. The experiment is also presented using the drone as a moving obstacle and YOLO vision algorithm to detect the drone. The experiment results demonstrate the reliability of the suggested method.


2021 ◽  
Vol 25 (1) ◽  
pp. 5-12
Author(s):  
Jerzy Graffstein

Successful avoidance of a mid air collision with moving obstacles depends on solutions of some most essential problems, e.g.: quick detection of an obstacle, verification whether detected obstacle is a critical one and making right decision on evasive manoeuvre. This decision – making process requires an appropriate identification of a threat’s nature, including whether detected obstacles should be treated as one aggregated group. Aggregation of obstacles moving in short distance one to the other is a typical case. The paper addresses also the case of inclusion the obstacle to the group objects moving in longer distances one to the other. The algorithm used for deciding whether a moving obstacle should be added to (aggregated with) a given group has been presented. A method for computing its characteristic parameters has been presented too. Selected scenarios of avoiding the aggregated group of moving obstacles have been simulated and results obtained illustrates problems considered.


Author(s):  
Victor Fors ◽  
Pavel Anistratov ◽  
Björn Olofsson ◽  
Lars Nielsen

Abstract A controller for critical vehicle maneuvering is proposed that avoids obstacles and keeps the vehicle on the road while achieving heavy braking. It operates at the limit of friction and is structured in two main steps: a motion-planning step based on receding-horizon planning to obtain acceleration-vector references, and a low-level controller for following these acceleration references and transforming them into actuator commands. The controller is evaluated in a number of challenging scenarios and results in a well behaved vehicle with respect to, e.g., the steering angle, the body slip, and the path. It is also demonstrated that the controller successfully balances braking and avoidance, such that it really takes advantage of the braking possibilities. Specifically, for a moving obstacle it makes use of a widening gap to perform more braking, which is a clear advantage of the online replanning capability if the obstacle should be a moving human or animal. Finally, real-time capabilities are demonstrated. In conclusion, the controller performs well, both from a functional perspective and from a real-time perspective.


Sign in / Sign up

Export Citation Format

Share Document