Algebraic separation in realizing a linear state feedback control law by means of an adaptive observer

1980 ◽  
Vol 25 (2) ◽  
pp. 238-243 ◽  
Author(s):  
G. Kreisselmeier
2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Dongyan Chen ◽  
Shanqiang Li ◽  
Yujing Shi

The practical stabilization problem is investigated for a class of linear systems with actuator saturation and input additive disturbances. Firstly, the case of the input additive disturbance being a bounded constant and a variety of different situations of system matrices are studied for the three-dimensional linear system with actuator saturation, respectively. By applying the Riccati equation approach and designing the linear state feedback control law, sufficient conditions are established to guarantee the semiglobal practical stabilization or oscillation for the addressed system. Secondly, for the case of the input additive disturbances being time-varying functions, a more general class of systems with actuator saturation is investigated. By employing the Riccati equation approach, a low-and-high-gain linear state feedback control law is designed to guarantee the global or semiglobal practical stabilization for the closed-loop systems.


1987 ◽  
Vol 109 (2) ◽  
pp. 186-189 ◽  
Author(s):  
W. E. Schmitendorf ◽  
B. R. Barmish

For a class of linear systems in which there are uncertain parameters in the system and input matrices, as well as constant additive disturbances, a linear state feedback control law is derived. The only information available about the uncertain parameters is the bounding sets in which they lie. The design guarantees that the specified output approaches zero for all possible parameter values and for all initial conditions. Two examples illustrate the application of the theory.


2017 ◽  
Vol 29 (3) ◽  
pp. 591-601
Author(s):  
Ryota Hayashi ◽  
◽  
Genki Matsuyama ◽  
Hisanori Amano ◽  
Hitomu Saiki ◽  
...  

[abstFig src='/00290003/14.jpg' width='300' text='Amphibian vehicle maneuvering simulator' ] This study proposes a maneuvering support system for an amphibian vehicle by applying a nonlinear state feedback control law for vehicle trajectory control. We consider that the vehicle should not drift sideways for good driving performance. To derive a nonlinear state feedback control law, we have defined ‘Maneuvering Trajectory’ as an additional reference trajectory that is generated by the driver’s maneuver. We have constructed a Lyapunov-like function for the trajectory control system. In this paper, we construct a vehicle-maneuvering simulator and set a clockwise circular reference trajectory. The efficiency of the proposed maneuvering support system is shown in the maneuvering simulations. We consider the case where the propulsive forces of the vehicle have limited influence on maneuverability. A new warning display system is proposed so that the driver can recognize if his or her maneuver is not suitable. Then, we examine the feasibility of the proposed warning display system through several simulations.


Sign in / Sign up

Export Citation Format

Share Document