Necessary and sufficient stability condition by finite number of mathematical operations for time-delay systems of neutral type

Author(s):  
Marco A. Gomez ◽  
Alexey Egorov ◽  
Sabine Mondie
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Xingao Zhu ◽  
Yuangong Sun

Reachable set bounding for homogeneous nonlinear systems with delay and disturbance is studied. By the usage of a new method for stability analysis of positive systems, an explicit necessary and sufficient condition is first derived to guarantee that all the states of positive homogeneous time-delay systems with degree p>1 converge asymptotically within a specific ball. Furthermore, the main result is extended to a class of nonlinear time variant systems. A numerical example is given to demonstrate the effectiveness of the obtained results.


Author(s):  
Martha Belem Saldivar Márquez ◽  
Islam Boussaada ◽  
Hugues Mounier ◽  
Silviu-Iulian Niculescu

Author(s):  
Hongfei Li ◽  
Keqin Gu

Many practical systems have a large number of state variables but only a few components have time delays. These delay components are often scalar or low dimensional, and involve single time delay in each component. A coupled differential-difference equation is well suited to formulate such systems. It is known that such a formulation is very general. Systems with multiple related or independent delays can be transformed into this standard form. Similar to regular time-delay systems, the existence of a quadratic Lyapunov-Krasovkii functional is necessary and sufficient for stability. This article discusses the discretization of such a quadratic Lyapunov-Krasovskii functional. Even for time-delay systems of retarded type, the formulation has significant advantage over the traditional formulation, as the size of the resulting linear matrix inequalities are drastically reduced for such systems. Indeed, the computational effort needed for checking stability of such a large system with a few low dimensional delays is quite reasonable.


Sign in / Sign up

Export Citation Format

Share Document