lyapunov matrix
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 33)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Zhijie Jin ◽  
Jieyong Zhou ◽  
Qixiang He

Abstract Since most time-dependent models may be represented as linear or non-linear dynamical systems, fuzzy linear matrix equations are quite general in signal processing, control and system theory. A uniform method of finding the classic solution of fuzzy linear matrix equations is presented in this paper. Conditions of solution existence are also studied here. Under the framework, a numerical method to solve fuzzy generalized Lyapunov matrix equations is developed. In order to show the validation and efficiency, some selected examples and numerical tests are presented.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Juan Zhang ◽  
Huihui Kang ◽  
Shifeng Li

AbstractIn this paper, we first recall some well-known results on the solvability of the generalized Lyapunov equation and rewrite this equation into the generalized Stein equation by using Cayley transformation. Then we introduce the matrix versions of biconjugate residual (BICR), biconjugate gradients stabilized (Bi-CGSTAB), and conjugate residual squared (CRS) algorithms. This study’s primary motivation is to avoid the increase of computational complexity by using the Kronecker product and vectorization operation. Finally, we offer several numerical examples to show the effectiveness of the derived algorithms.


2021 ◽  
Vol 8 (3) ◽  
pp. 526-536
Author(s):  
L. Sadek ◽  
◽  
H. Talibi Alaoui ◽  

In this paper, we present a new approach for solving large-scale differential Lyapunov equations. The proposed approach is based on projection of the initial problem onto an extended block Krylov subspace by using extended nonsymmetric block Lanczos algorithm then, we get a low-dimensional differential Lyapunov matrix equation. The latter differential matrix equation is solved by the Backward Differentiation Formula method (BDF) or Rosenbrock method (ROS), the obtained solution allows to build a low-rank approximate solution of the original problem. Moreover, we also give some theoretical results. The numerical results demonstrate the performance of our approach.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1778
Author(s):  
Mojtaba Masoumnezhad ◽  
Maziar Rajabi ◽  
Amirahmad Chapnevis ◽  
Aleksei Dorofeev ◽  
Stanford Shateyi ◽  
...  

The global stability analysis for the mathematical model of an infectious disease is discussed here. The endemic equilibrium is shown to be globally stable by using a modification of the Volterra–Lyapunov matrix method. The basis of the method is the combination of Lyapunov functions and the Volterra–Lyapunov matrices. By reducing the dimensions of the matrices and under some conditions, we can easily show the global stability of the endemic equilibrium. To prove the stability based on Volterra–Lyapunov matrices, we use matrices with the symmetry properties (symmetric positive definite). The results developed in this paper can be applied in more complex systems with nonlinear incidence rates. Numerical simulations are presented to illustrate the analytical results.


Sign in / Sign up

Export Citation Format

Share Document