TE-wave scattering by a dielectric cylinder of arbitrary cross-section shape

1966 ◽  
Vol 14 (4) ◽  
pp. 460-464 ◽  
Author(s):  
J. Richmond
Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2119
Author(s):  
Luís Mesquita David ◽  
Rita Fernandes de Carvalho

Designing for exceedance events consists in designing a continuous route for overland flow to deal with flows exceeding the sewer system’s capacity and to mitigate flooding risk. A review is carried out here on flood safety/hazard criteria, which generally establish thresholds for the water depth and flood velocity, or a relationship between them. The effects of the cross-section shape, roughness and slope of streets in meeting the criteria are evaluated based on equations, graphical results and one case study. An expedited method for the verification of safety criteria based solely on flow is presented, saving efforts in detailing models and increasing confidence in the results from simplified models. The method is valid for 0.1 m2/s 0.5 m2/s. The results showed that a street with a 1.8% slope, 75 m1/3s−1 and a rectangular cross-section complies with the threshold 0.3 m2/s for twice the flow of a street with the same width but with a conventional cross-section shape. The flow will be four times greater for a 15% street slope. The results also highlighted that the flood flows can vary significantly along the streets depending on the sewers’ roughness and the flow transfers between the major and minor systems, such that the effort detailing a street’s cross-section must be balanced with all of the other sources of uncertainty.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rachel M. Starkweather ◽  
Svetlana V. Poroseva ◽  
David T. Hanson

AbstractAn important role that the leading-edge cross-section shape plays in the wing flight performance is well known in aeronautics. However, little is known about the shape of the leading-edge cross section of an insect’s wing and its contribution to remarkable qualities of insect flight. In this paper, we reveal, in the first time, the shape of the leading-edge cross section of a cicada’s wing and analyze its variability along the wing. We also identify and quantify similarities in characteristic dimensions of this shape in the wings of three different cicada species.


Sign in / Sign up

Export Citation Format

Share Document