Study on Two-Dimensional Sparse MIMO UWB Arrays for High Resolution Near-Field Imaging

2012 ◽  
Vol 60 (9) ◽  
pp. 4173-4182 ◽  
Author(s):  
Xiaodong Zhuge ◽  
Alexander G. Yarovoy
Nanoscale ◽  
2019 ◽  
Vol 11 (30) ◽  
pp. 14113-14117 ◽  
Author(s):  
Mengfei Xue ◽  
Qi Zheng ◽  
Runkun Chen ◽  
Lihong Bao ◽  
Shixuan Du ◽  
...  

Near-field imaging of mid-infrared waveguide in SnSe2 slabs promotes two-dimensional van der Waals materials as building blocks for integrated MIR chips.


2018 ◽  
Vol 67 (10) ◽  
pp. 2353-2362 ◽  
Author(s):  
Mohamed A. Abou-Khousa ◽  
K. T. Muhammed Shafi ◽  
Xie Xingyu

2010 ◽  
Vol 18 (16) ◽  
pp. 17533 ◽  
Author(s):  
Hyungbae Moon ◽  
Yong-Joong Yoon ◽  
Wan-Chin Kim ◽  
No-Cheol Park ◽  
Kyoung-Su Park ◽  
...  

1997 ◽  
Vol 71 (20) ◽  
pp. 2886-2888 ◽  
Author(s):  
M. N. Islam ◽  
X. K. Zhao ◽  
A. A. Said ◽  
S. S. Mickel ◽  
C. F. Vail

Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 143
Author(s):  
Xin Yu ◽  
Yun Shen ◽  
Guohong Dai ◽  
Liner Zou ◽  
Tailin Zhang ◽  
...  

We experimentally demonstrate that high-resolution terahertz focusing can be realized in planar metalenses, which consist of arrays of different V-shaped antenna units on a silicon substrate. Numerical results show that a larger numerical aperture of metalenses can provide smaller full width at half maximum of field distribution, leading to higher spatial resolution. The measurement of fabricated metalenses samples was performed by a terahertz near-field imaging system, and experimental results agree well with the numerical prediction. Especially for 1.1 THz incident light, when the numerical aperture increases from 0.79 to 0.95, the full width at half maximum correspondingly decreases from 343 μm to 206 μm, offering an improvement of spatial resolution.


2021 ◽  
pp. 2101067
Author(s):  
He Li ◽  
Yun Bo Li ◽  
Gang Chen ◽  
Shu Yue Dong ◽  
Jia Lin Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document