scholarly journals Microbiome Data Representation by Joint Nonnegative Matrix Factorization with Laplacian Regularization

Author(s):  
Xingpeng Jiang ◽  
Xiaohua Hu ◽  
Weiwei Xu
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ling-Yun Dai ◽  
Rong Zhu ◽  
Juan Wang

The explosion of multiomics data poses new challenges to existing data mining methods. Joint analysis of multiomics data can make the best of the complementary information that is provided by different types of data. Therefore, they can more accurately explore the biological mechanism of diseases. In this article, two forms of joint nonnegative matrix factorization based on the sparse and graph Laplacian regularization (SG-jNMF) method are proposed. In the method, the graph regularization constraint can preserve the local geometric structure of data. L 2,1 -norm regularization can enhance the sparsity among the rows and remove redundant features in the data. First, SG-jNMF1 projects multiomics data into a common subspace and applies the multiomics fusion characteristic matrix to mine the important information closely related to diseases. Second, multiomics data of the same disease are mapped into the common sample space by SG-jNMF2, and the cluster structures are detected clearly. Experimental results show that SG-jNMF can achieve significant improvement in sample clustering compared with existing joint analysis frameworks. SG-jNMF also effectively integrates multiomics data to identify co-differentially expressed genes (Co-DEGs). SG-jNMF provides an efficient integrative analysis method for mining the biological information hidden in heterogeneous multiomics data.


2019 ◽  
Vol 164 ◽  
pp. 29-37 ◽  
Author(s):  
Shudong Huang ◽  
Peng Zhao ◽  
Yazhou Ren ◽  
Tianrui Li ◽  
Zenglin Xu

Author(s):  
Siyuan Peng ◽  
Zhijing Yang ◽  
Bingo Wing-Kuen Ling ◽  
Badong Chen ◽  
Zhiping Lin

2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Yuanyuan Ma ◽  
Junmin Zhao ◽  
Yingjun Ma

Abstract Background With the rapid development of high-throughput technique, multiple heterogeneous omics data have been accumulated vastly (e.g., genomics, proteomics and metabolomics data). Integrating information from multiple sources or views is challenging to obtain a profound insight into the complicated relations among micro-organisms, nutrients and host environment. In this paper we propose a multi-view Hessian regularization based symmetric nonnegative matrix factorization algorithm (MHSNMF) for clustering heterogeneous microbiome data. Compared with many existing approaches, the advantages of MHSNMF lie in: (1) MHSNMF combines multiple Hessian regularization to leverage the high-order information from the same cohort of instances with multiple representations; (2) MHSNMF utilities the advantages of SNMF and naturally handles the complex relationship among microbiome samples; (3) uses the consensus matrix obtained by MHSNMF, we also design a novel approach to predict the classification of new microbiome samples. Results We conduct extensive experiments on two real-word datasets (Three-source dataset and Human Microbiome Plan dataset), the experimental results show that the proposed MHSNMF algorithm outperforms other baseline and state-of-the-art methods. Compared with other methods, MHSNMF achieves the best performance (accuracy: 95.28%, normalized mutual information: 91.79%) on microbiome data. It suggests the potential application of MHSNMF in microbiome data analysis. Conclusions Results show that the proposed MHSNMF algorithm can effectively combine the phylogenetic, transporter, and metabolic profiles into a unified paradigm to analyze the relationships among different microbiome samples. Furthermore, the proposed prediction method based on MHSNMF has been shown to be effective in judging the types of new microbiome samples.


Sign in / Sign up

Export Citation Format

Share Document