microbiome data
Recently Published Documents


TOTAL DOCUMENTS

440
(FIVE YEARS 301)

H-INDEX

28
(FIVE YEARS 9)

2022 ◽  
Vol 1 ◽  
Author(s):  
Bin Hu ◽  
Shane Canon ◽  
Emiley A. Eloe-Fadrosh ◽  
Anubhav ◽  
Michal Babinski ◽  
...  

The nascent field of microbiome science is transitioning from a descriptive approach of cataloging taxa and functions present in an environment to applying multi-omics methods to investigate microbiome dynamics and function. A large number of new tools and algorithms have been designed and used for very specific purposes on samples collected by individual investigators or groups. While these developments have been quite instructive, the ability to compare microbiome data generated by many groups of researchers is impeded by the lack of standardized application of bioinformatics methods. Additionally, there are few examples of broad bioinformatics workflows that can process metagenome, metatranscriptome, metaproteome and metabolomic data at scale, and no central hub that allows processing, or provides varied omics data that are findable, accessible, interoperable and reusable (FAIR). Here, we review some of the challenges that exist in analyzing omics data within the microbiome research sphere, and provide context on how the National Microbiome Data Collaborative has adopted a standardized and open access approach to address such challenges.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Kalins Banerjee ◽  
Jun Chen ◽  
Xiang Zhan

ABSTRACT The important role of human microbiome is being increasingly recognized in health and disease conditions. Since microbiome data is typically high dimensional, one popular mode of statistical association analysis for microbiome data is to pool individual microbial features into a group, and then conduct group-based multivariate association analysis. A corresponding challenge within this approach is to achieve adequate power to detect an association signal between a group of microbial features and the outcome of interest across a wide range of scenarios. Recognizing some existing methods’ susceptibility to the adverse effects of noise accumulation, we introduce the Adaptive Microbiome Association Test (AMAT), a novel and powerful tool for multivariate microbiome association analysis, which unifies both blessings of feature selection in high-dimensional inference and robustness of adaptive statistical association testing. AMAT first alleviates the burden of noise accumulation via distance correlation learning, and then conducts a data-adaptive association test under the flexible generalized linear model framework. Extensive simulation studies and real data applications demonstrate that AMAT is highly robust and often more powerful than several existing methods, while preserving the correct type I error rate. A free implementation of AMAT in R computing environment is available at https://github.com/kzb193/AMAT.


2022 ◽  
Vol 1 ◽  
Author(s):  
Agostinetto Giulia ◽  
Sandionigi Anna ◽  
Bruno Antonia ◽  
Pescini Dario ◽  
Casiraghi Maurizio

Boosted by the exponential growth of microbiome-based studies, analyzing microbiome patterns is now a hot-topic, finding different fields of application. In particular, the use of machine learning techniques is increasing in microbiome studies, providing deep insights into microbial community composition. In this context, in order to investigate microbial patterns from 16S rRNA metabarcoding data, we explored the effectiveness of Association Rule Mining (ARM) technique, a supervised-machine learning procedure, to extract patterns (in this work, intended as groups of species or taxa) from microbiome data. ARM can generate huge amounts of data, making spurious information removal and visualizing results challenging. Our work sheds light on the strengths and weaknesses of pattern mining strategy into the study of microbial patterns, in particular from 16S rRNA microbiome datasets, applying ARM on real case studies and providing guidelines for future usage. Our results highlighted issues related to the type of input and the use of metadata in microbial pattern extraction, identifying the key steps that must be considered to apply ARM consciously on 16S rRNA microbiome data. To promote the use of ARM and the visualization of microbiome patterns, specifically, we developed microFIM (microbial Frequent Itemset Mining), a versatile Python tool that facilitates the use of ARM integrating common microbiome outputs, such as taxa tables. microFIM implements interest measures to remove spurious information and merges the results of ARM analysis with the common microbiome outputs, providing similar microbiome strategies that help scientists to integrate ARM in microbiome applications. With this work, we aimed at creating a bridge between microbial ecology researchers and ARM technique, making researchers aware about the strength and weaknesses of association rule mining approach.


2022 ◽  
Author(s):  
Shanlin Ke ◽  
Yandong Xiao ◽  
Scott T. Weiss ◽  
Xinhua Chen ◽  
Ciaran P. Kelly ◽  
...  

The indigenous gut microbes have co-evolved with their hosts for millions of years. Those gut microbes play a crucial role in host health and disease. In particular, they protect the host against incursion by exogenous and often harmful microorganisms, a mechanism known as colonization resistance (CR). Yet, identifying the exact microbes responsible for the gut microbiota-mediated CR against a particular pathogen remains a fundamental challenge in microbiome research. Here, we develop a computational method --- Generalized Microbe-Phenotype Triangulation (GMPT) to systematically identify causal microbes that directly influence the microbiota-mediated CR against a pathogen. We systematically validate GMPT using a classical population dynamics model in community ecology, and then apply it to microbiome data from two mouse studies on C. difficile infection. The developed method will not only significantly advance our understanding of CR mechanisms but also pave the way for the rational design of microbiome-based therapies for preventing and treating enteric infections.


2022 ◽  
Author(s):  
Albane Ruaud ◽  
Niklas A Pfister ◽  
Ruth E Ley ◽  
Nicholas D Youngblut

Background: Tree ensemble machine learning models are increasingly used in microbiome science as they are compatible with the compositional, high-dimensional, and sparse structure of sequence-based microbiome data. While such models are often good at predicting phenotypes based on microbiome data, they only yield limited insights into how microbial taxa or genomic content may be associated. Results: We developed endoR, a method to interpret a fitted tree ensemble model. First, endoR simplifies the fitted model into a decision ensemble from which it then extracts information on the importance of individual features and their pairwise interactions and also visualizes these data as an interpretable network. Both the network and importance scores derived from endoR provide insights into how features, and interactions between them, contribute to the predictive performance of the fitted model. Adjustable regularization and bootstrapping help reduce the complexity and ensure that only essential parts of the model are retained. We assessed the performance of endoR on both simulated and real metagenomic data. We found endoR to infer true associations with more or comparable accuracy than other commonly used approaches while easing and enhancing model interpretation. Using endoR, we also confirmed published results on gut microbiome differences between cirrhotic and healthy individuals. Finally, we utilized endoR to gain insights into components of the microbiome that predict the presence of human gut methanogens, as these hydrogen-consumers are expected to interact with fermenting bacteria in a complex syntrophic network. Specifically, we analyzed a global metagenome dataset of 2203 individuals and confirmed the previously reported association between Methanobacteriaceae and Christensenellales. Additionally, we observed that Methanobacteriaceae are associated with a network of hydrogen-producing bacteria. Conclusion: Our method accurately captures how tree ensembles use features and interactions between them to predict a response. As demonstrated by our applications, the resultant visualizations and summary outputs facilitate model interpretation and enable the generation of novel hypotheses about complex systems. An implementation of endoR is available as an open-source R-package on GitHub (https://github.com/leylabmpi/endoR).


2022 ◽  
Vol 12 ◽  
Author(s):  
Bingdong Liu ◽  
Liujing Huang ◽  
Zhihong Liu ◽  
Xiaohan Pan ◽  
Zongbing Cui ◽  
...  

Advances in next-generation sequencing (NGS) have revolutionized microbial studies in many fields, especially in clinical investigation. As the second human genome, microbiota has been recognized as a new approach and perspective to understand the biological and pathologic basis of various diseases. However, massive amounts of sequencing data remain a huge challenge to researchers, especially those who are unfamiliar with microbial data analysis. The mathematic algorithm and approaches introduced from another scientific field will bring a bewildering array of computational tools and acquire higher quality of script experience. Moreover, a large cohort research together with extensive meta-data including age, body mass index (BMI), gender, medical results, and others related to subjects also aggravate this situation. Thus, it is necessary to develop an efficient and convenient software for clinical microbiome data analysis. EasyMicroPlot (EMP) package aims to provide an easy-to-use microbial analysis tool based on R platform that accomplishes the core tasks of metagenomic downstream analysis, specially designed by incorporation of popular microbial analysis and visualization used in clinical microbial studies. To illustrate how EMP works, 694 bio-samples from Guangdong Gut Microbiome Project (GGMP) were selected and analyzed with EMP package. Our analysis demonstrated the influence of dietary style on gut microbiota and proved EMP package's powerful ability and excellent convenience to address problems for this field.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ken Blount ◽  
Courtney Jones ◽  
Dana Walsh ◽  
Carlos Gonzalez ◽  
William D. Shannon

Background: The human gut microbiota are important to health and wellness, and disrupted microbiota homeostasis, or “dysbiosis,” can cause or contribute to many gastrointestinal disease states. Dysbiosis can be caused by many factors, most notably antibiotic treatment. To correct dysbiosis and restore healthier microbiota, several investigational microbiota-based live biotherapeutic products (LBPs) are in formal clinical development. To better guide and refine LBP development and to better understand and manage the risks of antibiotic administration, biomarkers that distinguish post-antibiotic dysbiosis from healthy microbiota are needed. Here we report the development of a prototype Microbiome Health Index for post-Antibiotic dysbiosis (MHI-A).Methods: MHI-A was developed and validated using longitudinal gut microbiome data from participants in clinical trials of RBX2660 and RBX7455 – investigational LBPs in development for reducing recurrent Clostridioides difficile infections (rCDI). The MHI-A algorithm relates the relative abundances of microbiome taxonomic classes that changed the most after RBX2660 or RBX7455 treatment, that strongly correlated with clinical response, and that reflect biological mechanisms believed important to rCDI. The diagnostic utility of MHI-A was reinforced using publicly available microbiome data from healthy or antibiotic-treated populations.Results: MHI-A has high accuracy to distinguish post-antibiotic dysbiosis from healthy microbiota. MHI-A values were consistent across multiple healthy populations and were significantly shifted by antibiotic treatments known to alter microbiota compositions, shifted less by microbiota-sparing antibiotics. Clinical response to RBX2660 and RBX7455 correlated with a shift of MHI-A from dysbiotic to healthy values.Conclusion: MHI-A is a promising biomarker of post-antibiotic dysbiosis and subsequent restoration. MHI-A may be useful for rank-ordering the microbiota-disrupting effects of antibiotics and as a pharmacodynamic measure of microbiota restoration.


2021 ◽  
Author(s):  
Kittipot Uppakarn ◽  
Khotchawan Bangpanwimon ◽  
Tipparat Hongpattarakere ◽  
Worrawit Wanitsuwan

Abstract Background: The human gut microbiota has been related to numerous colonic diseases. To identify colorectal cancer (CRC)-associated microbiota, the gut microbiomes of patients with colonic polyps and CRC compared to normal controls were analyzed.Methods: Between July and December 2020, forty-four stool samples were obtained from participants older than 50 years who were scheduled for elective colonoscopies at the Surgery Clinic, Songklanagarind Hospital. The samples were divided into 3 groups (17 normal control, 17 colonic polyps, and 10 CRC) and were collected for analysis with a 16s metagenomic sequencing library preparation with MiSeq Reporter software (MSR) following the protocol of the 16s metagenomics workflow. The microbiome data were analyzed with Kruskal–Wallis test with the Dunn-Bonferroni post hoc method.Results: The relative proportions of beneficial butyrate-producers Kineothrix alysoides, Eubacterium rectale, and Roseburia inulinsivorans were significantly higher in healthy control and colonic polyp groups compared with the CRC group at the top three lowest p-values. The recommended CRC biomarker Clostridium symbiosum was shown in a significantly higher proportion in the CRC group than in the normal control group. The prevalences and relative proportion of the novel CRC-associated species Acutalibacter muris and the familiar CRC-associated species Christensenella massiliensis and lntestinimonas butyriciproducens were significantly higher in the CRC group than in the normal control and colonic polyp groups at the top three lowest p-values.Conclusions: A correlation between specific bacteria and clinical outcomes was found in this pilot study. The microbiome data revealed possible microbial biomarkers associated with CRC. Studies with larger numbers of stool samples are required to substantiate our findings.


2021 ◽  
Author(s):  
Alexis Gkantiragas ◽  
Jacopo Gabrielli

Honeybees (Apis Mellifera) perform an essential role in the ecosystem and economy through pollination of insect-pollinated plants, but their population is declining. Many causes of honeybees' decline are likely to be influenced by the microbiome which is thought to play an important role in bees and is particularly susceptible to infection and pesticides. However, there has been no systematic review or meta-analysis on honeybee microbiome data. Therefore, we conducted the first systematic meta-analysis of 16S-rRNA data to address this gap in the literature. Four studies were in a usable format - accounting for 336 honeybee's worth of data - the largest such dataset to the best of our knowledge. We analysed these datasets in QIIME2 and visualised the results in R-studio. For the first time, we conducted a multi-study evaluation of the core and rare bee microbiome and confirmed previous compositional microbiome data. We established that Snodgrassella, Lactobacillus, Bifidobacterium, Fructobacillus and Saccaribacter form part of the core microbiome and identify 251 rare bacterial genera. Additional components of the core microbiome were likely obscured by incomplete classification. Future studies should refine and add to our existing dataset to produce a more conclusive and high-resolution portrait of the honeybee microbiome. Furthermore, we emphasise the need for an actively curated dataset and enforcement of data sharing standards.


Sign in / Sign up

Export Citation Format

Share Document