Single Sideband Techniques for Marine Communications

Author(s):  
E. Pappenfus
Keyword(s):  
Author(s):  
Kenneth H. Downing ◽  
Benjamin M. Siegel

Under the “weak phase object” approximation, the component of the electron wave scattered by an object is phase shifted by π/2 with respect to the unscattered component. This phase shift has been confirmed for thin carbon films by many experiments dealing with image contrast and the contrast transfer theory. There is also an additional phase shift which is a function of the atomic number of the scattering atom. This shift is negligible for light atoms such as carbon, but becomes significant for heavy atoms as used for stains for biological specimens. The light elements are imaged as phase objects, while those atoms scattering with a larger phase shift may be imaged as amplitude objects. There is a great deal of interest in determining the complete object wave, i.e., both the phase and amplitude components of the electron wave leaving the object.


1991 ◽  
Vol 27 (14) ◽  
pp. 1250
Author(s):  
C. Baden ◽  
A.P. Jenkins ◽  
J.G. Gardiner

2011 ◽  
Vol 3 (3) ◽  
pp. 295-300 ◽  
Author(s):  
Akira Enokihara ◽  
Tadashi Kawai ◽  
Tetsuya Kawanishi

Doubled frequency optical two-tone generation and optical single sideband (SSB) modulation by the dual-electrode-type electro-optic (EO) modulator with a single Mach–Zehnder (MZ) interferometer were considered. We theoretically showed that redundant spectrum components in the modulated optical signals, which are caused by the imbalance of light splitting ratio between the two arms of the interferometer, are significantly suppressed by controlling the input power ratio of RF modulation signals applied to each electrode. This effect was confirmed by the experiment, where an optical two-tone with the redundant components 49.8 dB lower than the primary two-tone components in intensity level was obtained. This method is also valid for suppression of undesired frequency components of RF signals that are generated at a photo detector from the optical two-tone waves propagated through a dispersive optical fiber.


Sign in / Sign up

Export Citation Format

Share Document