intensity level
Recently Published Documents


TOTAL DOCUMENTS

677
(FIVE YEARS 243)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
Divya K, Veena ◽  
Anand Jatti ◽  
M. J. Vidya ◽  
Revan Joshi ◽  
Srikar Gade

Panoramic dental x-ray, a two-dimensional dental x-ray that captures the entire mouth in a single image, is used for the initial screening of various dental anomalies. One such is Jaw bone cyst, which, if not identified earlier, may lead to complications which in turn may lead to disfigurement and loss of function. Hence processing of radiographic images plays a vital role in identifying and locating the cystic region and extracting related features to assist clinical experts in further analysis. Objective: To develop an application of active contour model, known as Geodesic Active Contour, to generate Panoramic Dental X-Ray, a single 2 D X-ray image of the entire mouth highlighting the dental specifications. Methods: The process involves the image conversion from the OPG image into grayscale, Contrast adjustment using intensity level slicing, edge smoothing, segmentation, and cyst segmentation by Morphological Geodesic Active Contour to obtain the results. Hence processing of radiographic images plays a vital role in identifying and locating the cystic region. It is crucial in extracting related features to assist clinical experts in further analysis. Conclusion: When efficient and accurate diagnostic methods exist, the treatment and cure become easy and concrete. Based on the morphological snake and level sets, it aims at identifying the boundary by minimizing the energy. Results: Using the structural similarity index, an accuracy of 97.6% is obtained. Advances in Knowledge: This process is advantageous as it is simpler, faster, and does not suffer from instability problems. Morphological methods improve their functional gradient descent by improving stability and speed. The hysteresis algorithm exhibits better edge detection performance, a significant reduction in computational time and scalability.


2022 ◽  
Vol 3 (2) ◽  
Author(s):  
Oleksiy Yanenko ◽  
Kostiantyn Shevchenko ◽  
Sergiy Peregudov ◽  
Vladyslav Malanchuk

Sources of low-intensity microwave signals formation, which affect the metabolism processes when they interact with human body, are considered in the article. It’s noticed that increasing intensity level of the technogenic signals in environment significantly exceeds natural electromagnetic fields and radiation (EMR). The peculiarities of the registration and measurement of low-intensity signals parameters of the microwave range are considered. The processes of the interaction of the microwave signals and human organism are analyzed. Formation mechanisms of the positive and negative microwave flows of the electromagnetic radiation are revealed. Particularly, possible formation mechanism of the microwave EMR fluxes of implants in the human body. The results of the experimental study of the EMR signals levels of the objects contacting with human body, partly materials for bone defects replacement and soft tissues regeneration so as materials for physiotherapy, are given. The use of the term “electromagnetic compatibility” for materials which contacting the human body, is proposed. The expediency of its use is proven. Microwave properties of materials for clothes, minerals and building materials, which can affect the human body and environment, have been also studied.


2022 ◽  
Author(s):  
Lorena Ortiz-Jiménez ◽  
Carlos Iglesias-Merchan ◽  
Alba Itzel Martínez-Salazar ◽  
Isabel Barja

Abstract Human activities involving noise emission can affect wild animals. European mink was exposed to road noise and human voice playbacks to analyse how sound intensity level and duration of both noises altered the time that individuals were active and if their faecal cortisol metabolite (FCM) levels varied. A Hierarchical Analysis Cluster was performed to established two mink groups with respect to both noise source type: short duration/low intensity (SL) and long duration/high intensity (LH). We performed General Linear Mixed Models to evaluate the variation in locomotor activity duration (s) and FCM (ng/g) levels, respectively. The results showed both road noise and human voices decreased locomotor activity duration in SL more sharply compared to LH, and human voices were the triggers that induced the most pronounced response to both exposure conditions. FCM levels increased in SL compared to LH during road noise while the opposite happened during human voices. Differences based on sex and age of individuals were observed. In conclusion, noise characteristics given by the sound type determined the variations in locomotor activity duration while noise exposure level determined the variations in FCM levels. Attention should be paid to noisy activities (e.g. recreational activities for visitors in protected natural areas) and loud groups of people to conserve wildlife, especially noise sensitive species.


MAUSAM ◽  
2022 ◽  
Vol 46 (2) ◽  
pp. 163-168
Author(s):  
A. B.   BHATTACHARYA ◽  
B. K. DATTA ◽  
R. BHATTACHARYA

The paper examines some characteristics of the field intensity level of atmospherics at three harmonically related frequencies due to local active monsoon clouds. Seasonal variations of the ratio of afternoon maximum to morning minimum as well as that of the afternoon minimum to morning minimum of atmospherics and the local rainfall have been critically analysed. The differences of the two ratios exhibit a pronounced seasonal variation, having minimum values during the monsoon months and also the significance ratio at such times decreases with the increase of rainfall. which. in turn. is related to local sferics. The results further indicate how the overhead cloud amount in okta contributes significantly over the intensity level of different frequencies and width of atmospherics.  


2021 ◽  
Vol 12 (1) ◽  
pp. 125
Author(s):  
Sang-Jin Ma ◽  
Tae-Myung Shin ◽  
Ju-Seung Ryu ◽  
Jin-Hyeong Lee ◽  
Gyeong-Hoi Koo

Response characteristics of small-sized laminated rubber bearings (LRBs) with partial damage and total failure were investigated. For nuclear component seismic isolation, ultimate response characteristics are mainly reviewed using a beyond design basis earthquake (BDBE). Static tests, 3D shaking table tests, and verification analyses were performed using optional LRB design prototypes. During the static test, the hysteresis curve behavior from buckling to potential damage was observed by applying excessive shear deformation. The damaged rubber surface of the laminated section inside the LRB was checked through water jet cutting. A stress review by response spectrum analysis was performed to simulate the dynamic tests and predict seismic inputs’ intensity level that triggers LRB damage. Shaking table tests were executed to determine seismic response characteristics with partial damage and to confirm the stability of the superstructure when the supporting LRBs completely fail. Shear buckling in LRBs by high levels of BDBE may be quickly initiated via partial damage or total failure by the addition of torsional or rotational behavior caused by a change in the dynamic characteristics. Furthermore, the maximum seismic displacement can be limited within the range of the design interface due to the successive slip behavior, even during total LRB failure.


Author(s):  
QianQian Han ◽  
Xuesong Geng ◽  
Baifei Shen ◽  
Liangliang Ji ◽  
Zhizhan Xu

Abstract With the forthcoming 10-100PW laser facilities, laser-driven electron-positron-pair production has gained particular interest. Here a scheme to enhance the generation of dense electron-positron-pairs is proposed and numerically demonstrated, employing double laser pulses at the intensity level of 10^23 W cm^(-2). The first laser accelerates a thin foil to a relativistic speed via the radiation-pressure-acceleration mechanism and a counter-propagating laser irradiates this flying plasma layer. The simulation results indicate that a high-yield and well-collimated positron beam (~5.5×10^10 positrons/pulse, 8.8nC/pulse) is generated with a large peak density(1.1×10^21 cm^(-3) ) by using tens-of-PW laser pulses.


2021 ◽  
Author(s):  
Ayan Paul ◽  
Nabakumar Ghosh ◽  
Sabyasachi Bhattacharya

Abstract Sibly et al. (2005) described that most species have a fundamental characteristic to follow the theta-logistic growth trait with the convex downward trend. The fundamental yardstick of this research work builds under the deterministic setup, whereas the involvement of the external noise in any growth system is inevitable. But, the involvement of external affairs in any species growth can't be well judged only through its density dependence; it requires a further assessment. So, we frame the theta-logistic model with the stochastic analog in two directions, i.e., the discrete and continuous setup. The analysis of the discrete stochastic model is manifested by the bifurcation analysis, which shows that the attainment of the chaotic regime enhances with the increase in noise intensity level. Although the role of chaos in species extinction is debatable, a literature survey suggests that chaos with stochasticity accelerates the extinction of species. Similarly, in the case of the continuous version, we performed a theoretical study on the stochastic theta-logistic model to provide a critical value of the noise intensity parameter. This threshold magnitude act as the sustainability criteria of any species environmental tolerability. In this connection, we use the data of four major taxonomic groups, i.e., Bird, Insect, Mammal, and Fish, from the GPDD database and classify the species based on environmental sensitivity. The high sensitive species have a low tolerance level, associated with the small magnitude of environmental noise intensity parameter. Moreover, the simulation prediction model on these four taxonomic classes also shows that the overall extinction probability of the Bird is almost negligible for the current time window.


2021 ◽  
Vol 13 (24) ◽  
pp. 13690
Author(s):  
Olga Pilipczuk

The increasing role of emerging technologies, such as big data, the Internet of Things, artificial intelligence (AI), cognitive technologies, cloud computing, and mobile technologies, is essential to the business process manager profession’s sustainable development. Nevertheless, these technologies could involve new challenges in labor markets. The era of intelligent business process management (BPM) has begun, but how does it look in real labor markets? This paper examines the hypothesis that the transformation of the business process manager profession has been caused by certain determinants that involve the need for an improvement in BPM skills. The main contribution is a model of the dimensions of the impact of digital technologies on business process management supplemented with skills that influence the business process manager profession. The paper fills the gap in research on perspectives of the impact of digital technologies on business process management, considering both a literature analysis and labor market research. The purpose of the literature review was to identify the core dimensions that drive the use of emerging technologies in business process management. The labor market study was conducted in order to analyze the current demand for core skills of business process managers in the Polish labor market with a particular emphasis on the intelligent BPM concept. Additionally, to study the determinants that slow down the iBPM concept’s development, the digital intensity level of the enterprises and public administration units in Poland was studied. Finally, a fuzzy cognitive map presenting the core determinants of the business process manager profession’s transformation is described.


2021 ◽  
pp. 096452842110575
Author(s):  
Francisco Xavier de Brito ◽  
Cleber Luz-Santos ◽  
Janine Ribeiro Camatti ◽  
Rodrigo Jorge de Souza da Fonseca ◽  
Giovana Suzarth ◽  
...  

Introduction: There is evidence that electroacupuncture (EA) acts through the modulation of brain activity, but little is known about its influence on corticospinal excitability of the primary motor cortex (M1). Objective: To investigate the influence of EA parameters on the excitability of M1 in healthy individuals. Methods: A parallel, double blind, randomized controlled trial in healthy subjects, evaluating the influence of an EA intervention on M1 excitability. Participants had a needle inserted at LI4 in the dominant hand and received electrical stimulation of different frequencies (10 or 100 Hz) and amplitude (sensory or motor threshold) for 20 min. In the control group, only a brief (30 s) electrical stimulation was applied. Single and paired pulse transcranial magnetic stimulation coupled with electromyography was applied before and immediately after the EA intervention. Resting motor threshold, motor evoked potential, short intracortical inhibition and intracortical facilitation were measured. Results: EA increased corticospinal excitability of M1 compared to the control group only when administered with a frequency of 100 Hz at the sensory threshold ( p < 0.05). There were no significant changes in the other measures. Conclusion: The results suggest that EA with an intensity level at the sensorial threshold and 100 Hz frequency increases the corticospinal excitability of M1. This effect may be associated with a decrease in the activity of inhibitory intracortical mechanisms. Trial registration number: U1111-1173-1946 (Registro Brasileiro de Ensaios Clínicos; http://www.ensaiosclinicos.gov.br/ )


2021 ◽  
Vol 8 ◽  
Author(s):  
Dana A. Cusano ◽  
David Paton ◽  
Michael J. Noad ◽  
Rebecca A. Dunlop

Intraspecific conflict can be costly; therefore, many species engage in ritualized contests composed of several stages. Each stage is typically characterized by different levels of aggression, arousal, and physical conflict. During these different levels of “intensity,” animals benefit from communicating potential information related to features such as resource holding potential, relative fighting ability, level of aggression, intent (i.e., fight or flight), and whether or not the competitor currently holds the resource (e.g., a receptive female). This information may be conveyed using both visual displays and a complex acoustic repertoire containing fixed (e.g., age, sex, and body size) and flexible information (e.g., motivation or arousal). Calls that contain fixed information are generally considered “discrete” or stereotyped, while calls that convey flexible information are more “graded,” existing along an acoustic continuum. The use of displays and calls, and the potential information they convey, is likely dependent on factors like intensity level. The breeding system of humpback whales (Megaptera novaeangliae) involves intense male competition for access to a relatively limited number of breeding females (the resource). Here, we investigated the behavior and acoustic repertoire of competitive groups of humpback whales to determine if an increase in intensity level of the group was correlated with an increase in the complexity of the vocal repertoire. We categorized the behavior of humpback whales in competitive groups into three mutually exclusive stages from low to high intensity. While discrete calls were infrequent compared to graded calls overall, their use was highest in “low” and “moderate” intensity groups, which may indicate that this stage of contest is important for assessing the relative resource holding potential of competitors. In contrast, visual displays, call rates, and the use of graded call types, were highest during “high intensity” competitive groups. This suggests that flexible information may be more important in “high intensity” levels as males continue to assess the motivation and intent of competitors while actively engaged in costly conflict. We have shown that the relatively complex social call repertoire and visual displays of humpback whales in competitive groups likely functions to mediate frequently changing within-group relationships.


Sign in / Sign up

Export Citation Format

Share Document