frequency reference
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 58)

H-INDEX

22
(FIVE YEARS 4)

Author(s):  
Johan Petrus Burger ◽  
Renier Siebrits ◽  
Romeo Reginald Gunther Gamatham ◽  
Geomarr van Tonder ◽  
Grant Adams ◽  
...  

Author(s):  
Irina Homozkova

Two new three-frequency reference models of solid motion taking into account the vibrational environment are proposed. They are based on a four-frequency reference model of rotation [1], which implements rotations according to Krylov angles. For the developed models the analytical dependences for quasi-coordinates, projections of the angular velocity vector and components of the quaternion of orientation corresponding to such rotational motion are obtained. The urgency of taking into account the influence of vibration in traffic modeling on the basis of domestic and foreign literature in the field of navigation, including for the last 10 years. The main sources of vibration are described in detail and what types of oscillations they correspond to - harmonic oscillations occur in moving elements of onboard systems, such as the engine rotor, and in the engine unit and its units there are oscillations that have the character of random broadband noise. Methods of correction of such influence for increase of accuracy of definition of orientation of object are analyzed. The location of the components of the platformless inertial navigation system relative to the vibration sources is considered to be related to the strength of the influence of the vibration environment on the accuracy of the obtained data. Numerical implementations of the models are obtained and the drift error for the third-order orientation algorithm is estimated for several sets of specified parameters in a certain way. The parameters are chosen arbitrarily, but taking into account the existing restrictions on angular motion. The corresponding figures show the result for one of these sets of numerical values (which shows the result of the research in the most detail). The obtained results are compared with the corresponding results for the four-frequency rotation model [1]. The expediency of using new three-frequency models under certain conditions is shown.


Author(s):  
frédéric Du Burck ◽  
TATIANA STESHCHENKO ◽  
karim manamani ◽  
Fabrice Wiotte ◽  
Rodolphe Le Targat ◽  
...  

2021 ◽  
Vol 19 (2) ◽  
pp. 025201
Author(s):  
Ning Liu ◽  
Sandan Wang ◽  
Jinpeng Yuan ◽  
Lirong Wang ◽  
Liantuan Xiao ◽  
...  

Abstract We experimentally investigate the 6S 1/2–8S 1/2 two-photon transition in cesium vapor by a single laser. A blue (455.5 and 459.3 nm) fluorescence signal is observed as a result of 822.5 nm laser beams illuminating the Cs vapor with a counter-propagating configuration. The dependences of the fluorescence intensity on the polarization combinations of the laser beams, laser power and vapor temperature are studied to obtain optimal experimental parameters. The frequency difference between the two hyperfine components of 4158 (7) MHz is measured with a Fabry–Perot interferometer as a frequency reference. Such a large spectral isolation and the insensitivity to the Earth’s magnetic field enable the 6S 1/2–8S 1/2 transition to be a stable frequency standard candidate for a frequency-doubled 1644 nm laser in the U-band window for quantum telecommunication.


2021 ◽  
Author(s):  
Václav Římal ◽  
Morgane Callon ◽  
Alexander A. Malär ◽  
Riccardo Cadalbert ◽  
Anahit Torosyan ◽  
...  

Abstract. With the advent of faster magic-angle spinning (MAS) and higher magnetic fields, the resolution of biomolecular solid-state nuclear magnetic resonance (NMR) spectra has been continuously increasing. As a direct consequence, the always narrower spectral lines, especially in proton-detected spectroscopy, are also becoming more sensitive to temporal instabilities of the magnetic field in the sample volume. Field drifts in the order of tenths of ppm occur after probe insertion or temperature change, during cryogen refill, or are intrinsic to the superconducting high-field magnets, particularly in the months after charging. As an alternative to a field‒frequency lock based on deuterium solvent resonance rarely available for solid-state NMR, we present a strategy to compensate non-linear field drifts using simultaneous acquisition of a frequency reference (SAFR). It is based on the acquisition of an auxiliary 1D spectrum in each scan of the experiment. Typically, a small-flip-angle pulse is added at the beginning of the pulse sequence. Based on the frequency of the maximum of the solvent signal, the field evolu-tion in time is reconstructed and used to correct the raw data after acquisition, thereby acting in its principle as a digital lock system. The general applicability of our approach is demonstrated on 2D and 3D protein spectra during various situations with a non-linear field drift. SAFR with small-flip-angle pulses causes no significant loss in sensitivity or increase in exper-imental time in protein spectroscopy. The correction leads to the possibility of recording high-quality spectra in a typical biomolecular experiment even during non-linear field changes in the order of 0.1 ppm h−1 without the need for hardware solu-tions, such as stabilizing the temperature of the magnet bore. The improvement of linewidths and peak shapes turns out to be especially important for 1H-detected spectra under fast MAS, but the method is suitable for the detection of carbon or other nuclei as well.


2021 ◽  
Vol 66 ◽  
pp. 102653
Author(s):  
Jian Zhu ◽  
Bingli Guo ◽  
Jing Liang ◽  
Shanguo Huang

Author(s):  
Rishabh Gandhi ◽  
Rainer Leonhardt ◽  
Dominik Walter Vogt

Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 325
Author(s):  
Qi Zang ◽  
Honglei Quan ◽  
Kan Zhao ◽  
Xiang Zhang ◽  
Xue Deng ◽  
...  

In this paper, we demonstrate a wavelength division multiplexing (WDM)-based system for simultaneously delivering ultra-stable optical frequency reference, 10 GHz microwave frequency reference, and a one pulse per second (1 PPS) time signal via a 50 km fiber network. For each signal, a unique noise cancellation technique is used to maintain their precision. After being compensated, the transfer frequency instability in terms of the overlapping Allan deviation (OADEV) for the optical frequency achieves 2 × 10−17/s and scales down to 2 × 10−20/10,000 s, which for the 10 GHz microwave reference, approaches 4 × 10−15/s and decreases to 1.4 × 10−17/10,000 s, and the time uncertainty of the 1 PPS time signal along the system is 2.08 ps. In this scheme, specific channels of WDM are, respectively, occupied for different signals to avoid the possible crosstalk interference effect between the transmitted reference signals. To estimate the performance of the above scheme, which is also demonstrated in this 50 km link independent of these signals, the results are similar to that in the case of simultaneous delivery. This work shows that the WDM-based system is a promising method for building a nationwide time and frequency fiber transfer system with a communication optical network.


2021 ◽  
Author(s):  
Ya Zhang ◽  
Chathura Bandutunga ◽  
Terry McRae ◽  
Malcolm Gray ◽  
Jong Chow

Sign in / Sign up

Export Citation Format

Share Document