doppler frequency shift
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 56)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 26 (4) ◽  
pp. 326-343
Author(s):  
L. F. Chernogor ◽  
◽  
K. P. Garmash ◽  
Y. H. Zhdanko ◽  
S. G. Leus ◽  
...  

Purpose: Solar eclipses pertain to high-energy sources of disturbance in the subsystems of the Sun–interplanetary-medium–magnetosphere–ionosphere–atmosphere–Earth and the Earth–atmosphere–ionosphere–magnetosphere systems. During the solar eclipse, the coupling between the subsystems in these systems activates, and the parameters of the dynamic processes become disturbed. Investigation of these processes contributes to understanding of the structure and dynamics of the subsystems. The ionospheric response to the solar eclipse depends on the season, local time, magnitude of the solar eclipse, phase of the solar cycle, the observation site, the state of space weather, etc. Therefore, the study of the effects, which each new solar eclipse has on the ionosphere remains an urgent geophysics and radio physics problem. The purpose of this paper is to describe the radio wave characteristics and ionospheric parameters, which accompanied the partial solar eclipse of 10 June 2021 over the City of Kharkiv. Design/methodology/approach: To make observations, the means of the HF Doppler measurements at vertical and oblique incidence available at the V. N. Karazin Kharkiv National University Radiophysical Observatory were employed. The data obtained at the “Lviv” Magnetic Observatory were used for making intercomparison. Findings: The radiophysical observations have been made of the dynamic processes acting in the ionosphere during the solar eclipse of 10 June 2021 and on the reference days. The temporal variations in the Doppler frequency shift observed at vertical and oblique radio paths have been found to be, as a whole, similar. Generally speaking, the Doppler spectra over these radio propagation paths were different. Over the oblique radio paths, the number of rays was greater. The solar eclipse was accompanied by wave activity enhancement in the atmosphere and ionosphere. At least three wave trains were observed. The values of the periods (about 5–12 min) and the relative amplitudes of perturbations in the electron density (δN≈0.3–0.6 %) give evidence that the wave disturbances were caused by atmospheric gravity waves. The amplitude of the 6–8-min period geomagnetic variations has been estimated to be 0.5–1 nT. Approximately the same value has been recorded in the X component of the geomagnetic field at the nearest Magnetic Observatory. The aperiodic effect of the solar eclipse has appeared to be too small (less than 0.01 Hz) to be observed confidently. The smallness of the effect was predetermined by an insignificant magnitude of the partial eclipse over the City of Kharkiv (no more than 0.11). Conclusions: The features of the solar eclipse of 10 June 2021 include an insignificant magnitude of the aperiodic effect and an enhancement in wave activity in the atmosphere and ionosphere. Key words: solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity wave


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
B.A. Barabolya ◽  
◽  
D.D. Gabrieljan ◽  
S.V. Karavaev ◽  
A.V. Petukhov ◽  
...  

This work presents the result of the received signal measuring system for processing Doppler frequency theoretical research. In the researching device means of controlling laser frequency whose amplitude is proportional to the Doppler frequency shift of the received RF signal is realized. The coherent laser beam is divided in two forming interference pattern. In this case, one of the beams passes through the delay line, which leads to a phase shift in the optical wave. The rate of this phase shift is proportional to the laser frequency, changes in which cause corresponding changes in the interference pattern. Changes in the interference pattern in center analysis makes it possible to determine the changes of the laser frequency, which depends on Doppler frequency shift of the received RF signal. In this work opposition of the requirements for the Doppler frequency shift determination interferometric system parameters (the coefficient of proportionality to conversion Doppler frequency shift of the received RF signal in laser frequency and time delay) is discovered: large dynamic measurement range and high Doppler frequency shift measurement resolution. The processing the received RF signal method is proposed. This method take into consideration these requirements. The proposed measurement algorithm implements the multiscale principle. It is pointed that the proposed processing the measurements results method can be implemented both the parallel processing in channels with different values of conversion coefficients, and sequential – with their iterative change.


Author(s):  
K. A. Elagina

The study proposes a method of target range signal compensation within different pulse burst periods during in-period matched filtering. The proposed method allows to reduce losses in case of long-term signal integration. This is especially important for signals highly sensitive to Doppler frequency shift. In terms of this parameter, a multichannel configuration of the compression filter is a probable solution for such signals. Based on the example of a signal with non-linear frequency modulation and the results of simulation modelling, we analyse the effectiveness of migration compensation and give recommendations on channel multiplexing for the compression filter with an integrated migration compensator.


2021 ◽  
Author(s):  
Wenjun Zhao ◽  
Xiaoxiao Yao ◽  
Cui Yu ◽  
Simin Li ◽  
Shilong Pan

Sign in / Sign up

Export Citation Format

Share Document