doppler frequency
Recently Published Documents





2022 ◽  
Daichi Kitahara ◽  
Hiroki Kuroda ◽  
Akira Hirabayashi ◽  
Eiichi Yoshikawa ◽  
Hiroshi Kikuchi ◽  

<div>We propose nonlinear beamforming for phased array weather radars (PAWRs). Conventional beamforming is linear in the sense that a backscattered signal arriving from each elevation is reconstructed by a weighted sum of received signals, which can be seen as a linear transform for the received signals. For distributed targets such as raindrops, however, the number of scatterers is significantly large, differently from the case of point targets that are standard targets in array signal processing. Thus, the spatial resolution of the conventional linear beamforming is limited. To improve the spatial resolution, we exploit two characteristics of a periodogram of each backscattered signal from the distributed targets. The periodogram is a series of the powers of the discrete Fourier transform (DFT) coefficients of each backscattered signal and utilized as a nonparametric estimate of the power spectral density. Since each power spectral density is proportional to the Doppler frequency distribution, (i) major components of the periodogram are concentrated in the vicinity of the mean Doppler frequency, and (ii) frequency indices of the major components are similar between adjacent elevations. These are expressed as group-sparsities of the DFT coefficient matrix of the backscattered signals, and we propose to reconstruct the signals through convex optimization exploiting the group-sparsities. We consider two optimization problems. One problem roughly evaluates the group-sparsities and is relatively easy to solve. The other evaluates the group-sparsities more accurately, but requires more time to solve. Both problems are solved with the alternating direction method of multipliers including nonlinear mappings. Simulations using synthetic and real-world PAWR data show that the proposed method dramatically improves the spatial resolution.</div>

2022 ◽  
Vol 933 ◽  
Pulkit Dubey ◽  
Anubhab Roy ◽  
Ganesh Subramanian

We revisit the somewhat classical problem of the linear stability of a rigidly rotating liquid column in this article. Although the literature pertaining to this problem dates back to 1959, the relation between inviscid and viscous stability criteria has not yet been clarified. While the viscous criterion for stability, given by $We < n^2 + k^2 -1$ , is both necessary and sufficient, this relation has only been shown to be sufficient in the inviscid case. Here, $We = \rho \varOmega ^2 a^3 / \gamma$ is the Weber number and measures the relative magnitudes of the centrifugal and surface tension forces, with $\varOmega$ being the angular velocity of the rigidly rotating column, $a$ the column radius, $\rho$ the density of the fluid and $\gamma$ the surface tension coefficient; $k$ and $n$ denote the axial and azimuthal wavenumbers of the imposed perturbation. We show that the subtle difference between the inviscid and viscous criteria arises from the surprisingly complicated picture of inviscid stability in the $We$ – $k$ plane. For all $n > 1$ , the viscously unstable region, corresponding to $We > n^2 + k^2-1$ , contains an infinite hierarchy of inviscidly stable islands ending in cusps, with a dominant leading island. Only the dominant island, now infinite in extent along the $We$ axis, persists for $n=1$ . This picture may be understood, based on the underlying eigenspectrum, as arising from the cascade of coalescences between a retrograde mode, that is the continuation of the cograde surface-tension-driven mode across the zero Doppler frequency point, and successive retrograde Coriolis modes constituting an infinite hierarchy.

V. V. Legkostup ◽  
V. E. Markevich

In this paper, a method for estimating the distance to the object guided along a hyperbola to a target using a bistatic hyperbolic navigation system on a plane is given. At the same time, to solve the guidance problem, the number of required navigation positions is reduced by one in comparison with the classical method of hyperbolic navigation. However, in the guidance algorithms, it is still required to estimate the distance of the targeted object from the center of the base, the methods of obtaining which are considered in the work.

2022 ◽  
Vol 14 (1) ◽  
pp. 193
Haodong Li ◽  
Guisheng Liao ◽  
Jingwei Xu ◽  
Lan Lan

In this paper, a joint maritime moving target detection and imaging approach, referred to as the fast inverse synthetic aperture radar (ISAR) imaging approach, based on the multi-resolution space−time adaptive processing (STAP), is proposed to improve the target detection performance and the target imaging efficiency in an airborne radar system. In the target detection stage, the sub-band STAP is introduced to improve the robustness of clutter suppression and to enhance the target output power with the decreased range resolution, by which the coarse estimation of target range-Doppler (R-D) location is obtained as the prior knowledge. In the following target imaging stage, the ISAR imaging is applied in the localized R-D zone surrounding with the target location. However, it is difficult to directly apply ISAR imaging with the conventional R-D algorithm because the slow-moving maritime target cannot be separated from the clutter interference in the Doppler frequency dimension. In this regard, the full-band STAP is applied in the R-D two-dimensional frequency domain for the simultaneous clutter suppression and high-resolution ISAR imaging, in which the envelope alignment and phase compensation are achieved by adaptive match filtering with the target Doppler frequency coarse estimation. Moreover, the reduced-dimension STAP applied in the target-surrounded localized Doppler frequency zone gives facilities for alleviating the computation burden. Simulation results corroborate the effectiveness of the proposed method.

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 65
Deyvid L. Leite ◽  
Pablo Javier Alsina ◽  
Millena M. de Medeiros Campos ◽  
Vicente A. de Sousa ◽  
Alvaro A. M. de Medeiros

The use of unmanned aerial vehicles (UAV) to provide services such as the Internet, goods delivery, and air taxis has become a reality in recent years. The use of these aircraft requires a secure communication between the control station and the UAV, which demands the characterization of the communication channel. This paper aims to present a measurement setup using an unmanned aircraft to acquire data for the characterization of the radio frequency channel in a propagation environment with particular vegetation (Caatinga) and a lake. This paper presents the following contributions: identification of the communication channel model that best describes the characteristics of communication; characterization of the effects of large-scale fading, such as path loss and log-normal shadowing; characterization of small-scale fading (multipath and Doppler); and estimation of the aircraft speed from the identified Doppler frequency.

Sign in / Sign up

Export Citation Format

Share Document