Collaborative Edge Computing for Social Internet of Vehicles to Alleviate Traffic Congestion

Author(s):  
Tong Wang ◽  
Azhar Hussain ◽  
Lejun Zhang ◽  
Chen Zhao
Telecom ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 108-140
Author(s):  
Paulo Álvares ◽  
Lion Silva ◽  
Naercio Magaia

It had been predicted that by 2020, nearly 26 billion devices would be connected to the Internet, with a big percentage being vehicles. The Internet of Vehicles (IoVa) is a concept that refers to the connection and cooperation of smart vehicles and devices in a network through the generation, transmission, and processing of data that aims at improving traffic congestion, travel time, and comfort, all the while reducing pollution and accidents. However, this transmission of sensitive data (e.g., location) needs to occur with defined security properties to safeguard vehicles and their drivers since attackers could use this data. Blockchain is a fairly recent technology that guarantees trust between nodes through cryptography mechanisms and consensus protocols in distributed, untrustful environments, like IoV networks. Much research has been done in implementing the former in the latter to impressive results, as Blockchain can cover and offer solutions to many IoV problems. However, these implementations have to deal with the challenge of IoV node’s resource constraints since they do not suffice for the computational and energy requirements of traditional Blockchain systems, which is one of the biggest limitations of Blockchain implementations in IoV. Finally, these two technologies can be used to build the foundations for smart cities, enabling new application models and better results for end-users.


Author(s):  
Bowen Shen ◽  
Xiaolong Xu ◽  
Lianyong Qi ◽  
Xuyun Zhang ◽  
Gautam Srivastava

2021 ◽  
Author(s):  
Haoyang Shi ◽  
Yulan Zhang ◽  
Zhanyang Xu ◽  
Xiaolong Xu ◽  
Lianyong Qi

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 594 ◽  
Author(s):  
Tri Nguyen ◽  
Tien-Dung Nguyen ◽  
Van Nguyen ◽  
Xuan-Qui Pham ◽  
Eui-Nam Huh

By bringing the computation and storage resources close proximity to the mobile network edge, mobile edge computing (MEC) is a key enabling technology for satisfying the Internet of Vehicles (IoV) infotainment applications’ requirements, e.g., video streaming service (VSA). However, the explosive growth of mobile video traffic brings challenges for video streaming providers (VSPs). One known issue is that a huge traffic burden on the vehicular network leads to increasing VSP costs for providing VSA to mobile users (i.e., autonomous vehicles). To address this issue, an efficient resource sharing scheme between underutilized vehicular resources is a promising solution to reduce the cost of serving VSA in the vehicular network. Therefore, we propose a new VSA model based on the lower cost of obtaining data from vehicles and then minimize the VSP’s cost. By using existing data resources from nearby vehicles, our proposal can reduce the cost of providing video service to mobile users. Specifically, we formulate our problem as mixed integer nonlinear programming (MINP) in order to calculate the total payment of the VSP. In addition, we introduce an incentive mechanism to encourage users to rent its resources. Our solution represents a strategy to optimize the VSP serving cost under the quality of service (QoS) requirements. Simulation results demonstrate that our proposed mechanism is possible to achieve up to 21% and 11% cost-savings in terms of the request arrival rate and vehicle speed, in comparison with other existing schemes, respectively.


2013 ◽  
Vol 321-324 ◽  
pp. 2818-2821 ◽  
Author(s):  
Jian Ming Huang

At present, the transportation industry brings energy consumption, pollution and traffic congestion is becoming more and more serious, which has greatly restricted the economic and social development. This paper elaborates the concepts of Internet of things, intelligent transportation, and Internet of vehicles; Internet of vehicles based on Internet of Things technology is considered as an effective method to solve road congestion. The key technologies of the Internet of vehicles include traffic information perception technology, network communication technology, and cloud computing technologies etc. among them, radio frequency identification technology, sensor technology, floating car data technology, and GPS positioning technology are the focus. Application of Internet of vehicles is discussed, and its future development is prospected.


2021 ◽  
Vol 59 (8) ◽  
pp. 52-57
Author(s):  
Jie Xu ◽  
F. Richard Yu ◽  
Jingyu Wang ◽  
Qi Qi ◽  
Haifeng Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document