Global Tracking Control of Underactuated Ships With Input and Velocity Constraints Using Dynamic Surface Control Method

2011 ◽  
Vol 19 (6) ◽  
pp. 1357-1370 ◽  
Author(s):  
Dongkyoung Chwa
2020 ◽  
Vol 42 (15) ◽  
pp. 2956-2968
Author(s):  
Bo Li ◽  
Hanyu Ban ◽  
Wenquan Gong ◽  
Bing Xiao

This work presents a novel control strategy for the trajectory tracking control of the quadrotor unmanned aerial vehicle (UAV) with parameter uncertainties and external unknown disturbances. As a stepping stone, two fixed-time extended state observers (ESOs) are proposed to estimate the external disturbances and/or the parameter uncertainties for the position and attitude subsystems, respectively. Then, the fast terminal sliding mode-based improved dynamic surface control (DSC) approaches are developed. To eliminate the problem of “explosion of complexity” inherent in backstepping method-based controllers, the finite-time command filters and an error compensation signals are used in the design of the dynamic surface controllers. Subsequently, the practically finite-time stability of the closed-loop tracking system is guaranteed by utilizing the proposed control scheme. The simulation results are obtained to demonstrate the effectiveness and fine performance of the proposed trajectory tracking control approaches.


Author(s):  
Yunfei Wang ◽  
Jiyun Zhao ◽  
Haigang Ding ◽  
He Zhang

The electro-hydraulic system is widely used in industrial production due to its high power-to-weight ratio, but the heavy-duty characteristics make the electro-hydraulic system subject to large disturbance force even if the actuator moves slightly, especially in mobile machines and multi-actuators system. Therefore, a position and velocity constraints method based on barrier Lyapunov function is proposed to guarantee the tracking error limited in a strict range to avoid the large disturbance force. Besides, the external disturbance, parameters uncertainty and modeling errors in the asymmetric cylinder electro-hydraulic systems affect the accuracy of position tracking seriously. So a high-gain disturbance observer is designed to estimate the lumped disturbance of the system, which can avoid amplification of the noise during the states measurement. In addition, dynamic surface control based on backstepping method is adopted to avoid the derivative explosion phenomenon when calculating the derivatives of virtual control inputs, which reduces the computational complexity of the system significantly. To verify the effectiveness of the proposed controller, proportional-integral controller and adaptive controller are designed to be compared with the high-gain disturbance observer–based dynamic surface controller with the backstepping method, and the comparison results show that the proposed controller has a more precise trajectory tracking performance.


2017 ◽  
Vol 37 (3) ◽  
pp. 304-313 ◽  
Author(s):  
Zhiguang Chen ◽  
Chenguang Yang ◽  
Xin Liu ◽  
Min Wang

Purpose The purpose of this paper is to study the controller design of flexible manipulator. Flexible manipulator system is a nonlinear, strong coupling, time-varying system, which is introduced elastodynamics in the study and complicated to control. However, due to the flexible manipulator, system has a significant advantage in response speed, control accuracy and load weight ratio to attract a lot of researchers. Design/methodology/approach Since the order of flexible manipulator system is high, designing controller process will be complex, and have a large amount of calculation, but this paper will use the dynamic surface control method to solve this problem. Findings Dynamic surface control method as a controller design method which can effectively solve the problem with the system contains nonlinear and reduced design complexity. Originality/value The authors assume that the dynamic parameters of flexible manipulator system are unknown, and use Radial Basis Function neural network to approach the unknown system, combined with the dynamic surface control method to design the controller.


2013 ◽  
Vol 385-386 ◽  
pp. 872-876 ◽  
Author(s):  
Wen Lei Li ◽  
Wei Xing Lin

For the single machine connected to infinite bus power system with uncertainties, one nonlinear coordinated control scheme for Static Synchronous Compensator (STATCOM) and excitation is proposed in this paper. Firstly, in order to avoid solving the differential algebraic equations (DAEs) model of system, we simplify the DAEs into the classical differential equations, and then a new nonlinear parameter strict feedback model is given. Secondly, in order to make the system achieve the desired results, the controller is designed in two parts based on improved dynamic surface control method (IDSC) and passive control techniques. The theoretical analysis shows that the derived controller can not only attenuate the influences of external disturbances, but also has strong robustness for system parameters variety. The control law obtained is more effective and the system globally and uniformly ultimately bounded can be achieved using full nature of nonlinear dynamic. Lastly, the further simulation results indicate that the proposed controller can ensure transient stability of the power system under large sudden fault.


Author(s):  
Xiangyu Wang ◽  
Ling Han ◽  
Jiyu Liu

In this paper, the attitude and height tracking control problem is studied for unmanned helicopters with disturbances. To solve the problem, a composite control scheme is proposed based on the combination of dynamic surface control and disturbance observer-based control techniques. The control design includes two parts. In the first part, some nonlinear disturbance observers are designed to accurately estimate the helicopter’s disturbances in different channels. In the second part, based on the disturbance estimates and dynamic surface control technique, a composite dynamic surface tracking controller is designed. Under the proposed composite controller, the attitude and height tracking errors are uniformly ultimately bounded and they can be regulated to be very small by selecting proper controller parameters. For one thing, the proposed control scheme avoids “explosion of terms”, which generally exists in conventional backstepping control and provides a simpler control design. For another thing, without sacrificing the nominal control performances, the anti-disturbance ability of the closed-loop helicopter system is enhanced by using disturbance observers and feedforward compensations. Numerical simulations demonstrate the effectiveness and advantages of the proposed composite tracking controller.


Sign in / Sign up

Export Citation Format

Share Document