MOMMOP: Multiobjective Optimization for Locating Multiple Optimal Solutions of Multimodal Optimization Problems

2015 ◽  
Vol 45 (4) ◽  
pp. 830-843 ◽  
Author(s):  
Yong Wang ◽  
Han-Xiong Li ◽  
Gary G. Yen ◽  
Wu Song
2021 ◽  
Vol 12 (4) ◽  
pp. 81-100
Author(s):  
Yao Peng ◽  
Zepeng Shen ◽  
Shiqi Wang

Multimodal optimization problem exists in multiple global and many local optimal solutions. The difficulty of solving these problems is finding as many local optimal peaks as possible on the premise of ensuring global optimal precision. This article presents adaptive grouping brainstorm optimization (AGBSO) for solving these problems. In this article, adaptive grouping strategy is proposed for achieving adaptive grouping without providing any prior knowledge by users. For enhancing the diversity and accuracy of the optimal algorithm, elite reservation strategy is proposed to put central particles into an elite pool, and peak detection strategy is proposed to delete particles far from optimal peaks in the elite pool. Finally, this article uses testing functions with different dimensions to compare the convergence, accuracy, and diversity of AGBSO with BSO. Experiments verify that AGBSO has great localization ability for local optimal solutions while ensuring the accuracy of the global optimal solutions.


2021 ◽  
pp. 93-110 ◽  
Author(s):  
Hitarth Buch ◽  
Indrajit Trivedi

This paper offers a novel multiobjective approach – Multiobjective Ions Motion Optimization (MOIMO) algorithm stimulated by the movements of ions in nature. The main inspiration behind this approach is the force of attraction and repulsion between anions and cations. A storage and leader selection strategy is combined with the single objective Ions Motion Optimization (IMO) approach to estimate the Pareto optimum front for multiobjective optimization. The proposed method is applied to 18 different benchmark test functions to confirm its efficiency in finding optimal solutions. The outcomes are compared with three novel and well-accepted techniques in the literature using five performance parameters quantitatively and obtained Pareto fronts qualitatively. The comparison proves that MOIMO can approximate Pareto optimal solutions with good convergence and coverage with minimum computational time.


Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 32 ◽  
Author(s):  
Benjamín Barán ◽  
Marcos Villagra

In this work we show how to use a quantum adiabatic algorithm to solve multiobjective optimization problems. For the first time, we demonstrate a theorem proving that the quantum adiabatic algorithm can find Pareto-optimal solutions in finite-time, provided some restrictions to the problem are met. A numerical example illustrates an application of the theorem to a well-known problem in multiobjective optimization. This result opens the door to solve multiobjective optimization problems using current technology based on quantum annealing.


2018 ◽  
Vol 9 (2) ◽  
pp. 15-27
Author(s):  
Haihuang Huang ◽  
Liwei Jiang ◽  
Xue Yu ◽  
Dongqing Xie

In reality, multiple optimal solutions are often necessary to provide alternative options in different occasions. Thus, multimodal optimization is important as well as challenging to find multiple optimal solutions of a given objective function simultaneously. For solving multimodal optimization problems, various differential evolution (DE) algorithms with niching and neighborhood strategies have been developed. In this article, a hypercube-based crowding DE with neighborhood mutation is proposed for such problems as well. It is characterized by the use of hypercube-based neighborhoods instead of Euclidean-distance-based neighborhoods or other simpler neighborhoods. Moreover, a self-adaptive method is additionally adopted to control the radius vector of a hypercube so as to guarantee the neighborhood size always in a reasonable range. In this way, the algorithm will perform a more accurate search in the sub-regions with dense individuals, but perform a random search in the sub-regions with only sparse individuals. Experiments are conducted in comparison with an outstanding DE with neighborhood mutation, namely NCDE. The results show that the proposed algorithm is promising and computationally inexpensive.


2015 ◽  
Vol 2015 ◽  
pp. 1-16
Author(s):  
Lei Fan ◽  
Yuping Wang ◽  
Xiyang Liu ◽  
Liping Jia

Auxiliary function methods provide us effective and practical ideas to solve multimodal optimization problems. However, improper parameter settings often cause troublesome effects which might lead to the failure of finding global optimal solutions. In this paper, a minimum-elimination-escape function method is proposed for multimodal optimization problems, aiming at avoiding the troublesome “Mexican hat” effect and reducing the influence of local optimal solutions. In the proposed method, the minimum-elimination function is constructed to decrease the number of local optimum first. Then, a minimum-escape function is proposed based on the minimum-elimination function, in which the current minimal solution will be converted to the unique global maximal solution of the minimum-escape function. The minimum-escape function is insensitive to its unique but easy to adopt parameter. At last, an minimum-elimination-escape function method is designed based on these two functions. Experiments on 19 widely used benchmarks are made, in which influences of the parameter and different initial points are analyzed. Comparisons with 11 existing methods indicate that the performance of the proposed algorithm is positive and effective.


2019 ◽  
Vol 53 (3) ◽  
pp. 867-886
Author(s):  
Mehrdad Ghaznavi ◽  
Narges Hoseinpoor ◽  
Fatemeh Soleimani

In this study, a Newton method is developed to obtain (weak) Pareto optimal solutions of an unconstrained multiobjective optimization problem (MOP) with fuzzy objective functions. For this purpose, the generalized Hukuhara differentiability of fuzzy vector functions and fuzzy max-order relation on the set of fuzzy vectors are employed. It is assumed that the objective functions of the fuzzy MOP are twice continuously generalized Hukuhara differentiable. Under this assumption, the relationship between weakly Pareto optimal solutions of a fuzzy MOP and critical points of the related crisp problem is discussed. Numerical examples are provided to demonstrate the efficiency of the proposed methodology. Finally, the convergence analysis of the method under investigation is discussed.


Sign in / Sign up

Export Citation Format

Share Document