Investigation of transformer model winding deformation using sweep frequency response analysis

2012 ◽  
Vol 19 (6) ◽  
pp. 1957-1961 ◽  
Author(s):  
K. Ludwikowski ◽  
K. Siodla ◽  
W. Ziomek
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4009
Author(s):  
Yeunggurl Yoon ◽  
Yongju Son ◽  
Jintae Cho ◽  
SuHyeong Jang ◽  
Young-Geun Kim ◽  
...  

A power transformer is an essential device for stable and reliable power transfer to customers. Therefore, accurate modeling of transformers is required for simulation-based analysis with the model. The paper proposes an efficient and straightforward parameter estimation of power transformers based on sweep frequency response analysis (SFRA) test data. The method first develops a transformer model consisting of repetitive RLC sections and mutual inductances and then aligns the simulated SFRA curve with the measured one by adjusting parameters. Note that this adjustment is based on individual parameter impacts on the SFRA curve. After aligning the two curves, the final transformer model can be obtained. In this paper, actual single-phase, three-winding transformer model parameters were estimated based on field SFRA data, showing that SFRA curves simulated from the estimated model are consistent with the measured data.


The sweep frequency response analysis is extensively used technique for detect hidden fault and condition monitoring of power transformer. The operation is administered by supply a coffee voltage signal of varying frequencies to the transformer windings and measuring both the input and output signals. These two signals give the specified response of the ratio is named the transfer function of the transformer from which both the magnitude and phase are often obtained. Frequency response is change as measured by SFRA techniques may indicate a phase transition inside the transformer, then causes of fault identified and investigation is required for root cause analysis.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6491
Author(s):  
Qian Wu ◽  
Yizhuo Hu ◽  
Ming Dong ◽  
Bo Song ◽  
Changjie Xia ◽  
...  

Frequency response analysis is widely used to diagnose transformer winding deformation faults due to its high sensitivity, strong anti-interference capability, and equipment portability, but the results of frequency response analysis can be affected by insulation aging and moisture in the transformer, leading to errors in the diagnosis of winding deformation faults. Currently, there is no effective method to prevent such errors. This paper focuses on optimizing the criterion for diagnosing winding deformations when insulation aging and moisture are present. First, the winding frequency response curves of oil-paper insulation were determined by combining insulation aging and moisture tests of the oil-paper insulation with frequency response simulations of the transformer winding. Next, the winding deformation criterion predicting the likelihood and extent of errors diagnosing transformer winding deformations due to the insulation aging and moisture content is discussed. Finally, the corresponding criterion optimization method is proposed. The corresponding results show that insulation aging and moisture can lead to errors when using the correlation coefficient R criterion to diagnose the transformer winding deformations. Moreover, the possibility of winding deformation errors caused by the change of insulation state can be reduced by introducing the corresponding auxiliary criterion through comparing the capacitance change rate based on the frequency response method and that based on the dielectric spectrum method.


Sign in / Sign up

Export Citation Format

Share Document