The vortex beams conversion from the optical range into the radio domain based on the nonlinear generation of the difference frequency

Author(s):  
Valery Kh. Bagmanov ◽  
Albert Kh. Sultanov ◽  
Azat R. Gizatulin ◽  
Ivan K. Meshkov ◽  
Ilya A. Kuk ◽  
...  
2019 ◽  
Vol 43 (6) ◽  
pp. 983-991
Author(s):  
V.Kh. Bagmanov ◽  
A.Kh. Sultanov ◽  
A.R. Gizatulin ◽  
I.K. Meshkov ◽  
I.A. Kuk ◽  
...  

In this paper, using a modified model of slowly varying amplitudes, a process of optics-to-THZ-conversion of vortex beams based on the nonlinear difference frequency generation in a medium with second-order susceptibility is considered. A theoretical substantiation of the law of topological charge conversion of vortex beams is given – the topological charge of the output THz vortex beam is equal to the difference of the topological charges of the input optical vortex beams. A simulation model of the processes under consideration is implemented.


1969 ◽  
Vol 180 (2) ◽  
pp. 363-365 ◽  
Author(s):  
D. W. Faries ◽  
K. A. Gehring ◽  
P. L. Richards ◽  
Y. R. Shen

1967 ◽  
Vol 45 (5) ◽  
pp. 1771-1781 ◽  
Author(s):  
C. R. James ◽  
W. B. Thompson

The heating of a magnetized hot diffuse plasma using the difference frequency signal generated from two high-frequency (35 GHz) transverse waves is examined. The plasma is described by the cold plasma model and a series expansion of harmonics is used to obtain a solution to the equations. It is shown that the energy absorbed by the ions can be made inversely proportional to the collision frequency and the fourth power of the driven frequency and proportional to the fourth power of the driven electric field intensity. An investigation of the sensitivity of the heating process to fluctuations in frequency, density, and d-c. magnetic field is carried out.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
María Teresa Tejedor Sastre ◽  
Christian Vanhille

This paper studies the nonlinear resonance of a cavity filled with a nonlinear biphasic medium made of a liquid and gas bubbles at a frequency generated by nonlinear frequency mixing. The analysis is performed through numerical simulations by mixing two source signals of frequencies well below the bubble resonance. The finite-volume and finite-difference based model developed in the time domain simulates the nonlinear interaction of ultrasound and bubble dynamics via the resolution of a differential system formed by the wave and Rayleigh–Plesset equations. Some numerical results, consistent with the literature, validate our procedure. Other results reveal the existence of a frequency shift of the cavity resonance at the difference-frequency component, which rises with pressure amplitude and evidences the global changes undergone by the bubbly medium under finite amplitudes. Finally, this work shows the enhancement of the amplitude of the difference-frequency component generated by parametric excitation using the nonlinear resonance shift, which is more pronounced when the second primary frequency is constant, the first one is varied to match the nonlinear resonance, and both have the same amplitude.


Sign in / Sign up

Export Citation Format

Share Document