Impact of RF Shimming on RF-Induced Heating Near Implantable Medical Electrodes in a 3T MRI Coil

2020 ◽  
Vol 62 (1) ◽  
pp. 52-64
Author(s):  
Qi Zeng ◽  
Qingyan Wang ◽  
Wolfgang Kainz ◽  
Ji Chen
Keyword(s):  
3T Mri ◽  
Author(s):  
I Graesslin ◽  
P Vernickel ◽  
J Schmidt ◽  
C Findeklee ◽  
P Röschmann ◽  
...  
Keyword(s):  
3T Mri ◽  

2011 ◽  
Vol 13 (S1) ◽  
Author(s):  
Allison G Hays ◽  
Sebastian Kelle ◽  
Glenn A Hirsch ◽  
Jing Yu ◽  
Harsh K Agarwal ◽  
...  

Author(s):  
Marieke Voet ◽  
Christiaan G. Overduin ◽  
Ernst L. Stille ◽  
Jurgen J. Fütterer ◽  
Joris Lemson

AbstractThermodilution cardiac output monitoring, using a thermistor-tipped intravascular catheter, is used in critically ill patients to guide hemodynamic therapy. Often, these patients also need magnetic resonance imaging (MRI) for diagnostic or prognostic reasons. As thermodilution catheters contain metal, they are considered MRI-unsafe and advised to be removed prior to investigation. However, removal and replacement of the catheter carries risks of bleeding, perforation and infection. This research is an in vitro safety assessment of the PiCCO™ thermodilution catheter during 3 T Magnetic Resonance Imaging (3T-MRI).  In a 3T-MRI environment, three different PiCCO™ catheter sizes were investigated in an agarose-gel, tissue mimicking phantom. Two temperature probes measured radiofrequency-induced heating; one at the catheter tip and one at a reference point. Magnetically induced catheter dislocation was assessed by visual observation as well as by analysis of the tomographic images. For all tested catheters, the highest measured temperature increase was 0.2 °C at the center of the bore and 0.3 °C under “worst-case” setting for the tested MRI pulse sequences. No magnetically induced catheter displacements were observed. Under the tested circumstances, no heating or dislocation of the PiCCO™ catheter was observed in a tissue mimicking phantom during 3T-MRI. Leaving the catheter in the critically ill patient during MRI investigation might pose a lower risk of complications than catheter removal and replacement.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199473
Author(s):  
Takeshi Yoshizako ◽  
Rika Yoshida ◽  
Hiroya Asou ◽  
Megumi Nakamura ◽  
Hajime Kitagaki

Background Echo-planar imaging (EPI)-diffusion-weighted imaging (DWI) may take unclear image affected by susceptibility, geometric distortions and chemical shift artifacts. Purpose To compare the image quality and usefulness of EPI-DWI and turbo spin echo (TSE)-DWI in female patients who required imaging of the pelvis. Material and Methods All 57 patients were examined with a 3.0-T MR scanner. Both TSE- and EPI-DWI were performed with b values of 0 and 1000 s/mm2. We compared geometric distortion, the contrast ratio (CR) of the myometrium to the muscle and the apparent diffusion coefficient (ADC) values for the myometrium and lesion. Two radiologists scored the TSE- and EPI-DWI of each patient for qualitative evaluation. Results The mean percent distortion was significantly smaller with TSE- than EPI-DWI ( p = 0.00). The CR was significantly higher with TSE- than EPI-DWI ( p = 0.003). There was a significant difference in the ADC value for the uterus and lesions between the EPI- and TSE-DWI ( p < 0.05). Finally, the ADC values of cancer were significantly different from those for the uterus and benign with both the two sequences ( p < 0.05). The scores for ghosting artifacts were higher with TSE- than EPI-DWI ( p = 0.019). But there were no significant differences between TSE- and EPI-DWI with regard to image contrast and overall image quality. Conclusion TSE-DWI on the female pelvis by 3T MRI produces less distortion and higher CR than EPI-DWI, but there is no difference in contrast and image quality.


Rheumatology ◽  
2008 ◽  
Vol 48 (5) ◽  
pp. 537-541 ◽  
Author(s):  
J. Geiger ◽  
T. Ness ◽  
M. Uhl ◽  
W. A. Lagreze ◽  
P. Vaith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document