echo planar
Recently Published Documents


TOTAL DOCUMENTS

1266
(FIVE YEARS 166)

H-INDEX

94
(FIVE YEARS 7)

Author(s):  
Cornelius Morze ◽  
Tyler Blazey ◽  
Richard Baeza ◽  
Ruslan Garipov ◽  
Timothy Whitehead ◽  
...  

2021 ◽  
Author(s):  
Anna I Blazejewska ◽  
Thomas Witzel ◽  
Jesper LR Andersson ◽  
Lawrence L Wlad ◽  
Jonathan R Polimeni

Accurate spatial alignment of MRI data acquired across multiple contrasts in the same subject is often crucial for data analysis and interpretation, but can be challenging in the presence of geometric distortions that differ between acquisitions. It is well known that single-shot echo-planar imaging (EPI) acquisitions suffer from distortion in the phase-encoding direction due to B0 field inhomogeneities arising from tissue magnetic susceptibility differences and other sources, however there can be distortion in other encoding directions as well in the presence of strong field homogeneities. High-resolution ultrahigh-field MRI typically uses low bandwidth in the slice-encoding direction to acquire thin slices and, when combined with the pronounced B0 inhomogeneities, is prone to an additional geometric distortion in the slice direction as well. Here we demonstrate a presence of this slice distortion in high-resolution 7T EPI acquired with a novel pulse sequence allowing for the reversal of the slice-encoding gradient polarity that enables the acquisition of pairs of images with equal magnitudes of distortion in the slice direction but with opposing polarities. We also show that the slice-direction distortion can be corrected using gradient reversal-based method applying the same software used for conventional corrections of phase-encoding direction distortion.


Author(s):  
Jos J. M. Westenberg ◽  
Hans C. Assen ◽  
Pieter J. den Boogaard ◽  
Jelle J. Goeman ◽  
Hicham Saaid ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2273
Author(s):  
Shuyi Peng ◽  
Yihao Guo ◽  
Xiaoyong Zhang ◽  
Juan Tao ◽  
Jie Liu ◽  
...  

To investigate the feasibility and effectiveness of high-resolution readout-segmented echo planar imaging (rs-EPI), diffusion-weighted imaging (DWI) is used simultaneously with multi-slice (SMS) imaging (SMS rs-EPI) for the differentiation of breast malignant and benign lesions in comparison to conventional rs-EPI on a 3T MR scanner. A total of 102 patients with 113 breast lesions underwent bilateral breast MRI using a prototype SMS rs-EPI sequence and a conventional rs-EPI sequence. Subjective image quality was assessed using a 5-point Likert scale (1 = poor, 5 = excellent). Signal-to-noise ratio (SNR), lesion contrast-to-noise ratio (CNR) and apparent diffusion coefficients (ADC) value of the lesion were measured for comparison. Receiver operating characteristic curve analysis was performed to evaluate the diagnosis performance of ADC, and the corresponding area under curve (AUC) was calculated. The image quality scores in anatomic distortion, lesion conspicuity, sharpness of anatomical details and overall image quality of SMS rs-EPI were significantly higher than those of conventional rs-EPI. CNR was enhanced in the high-resolution SMS rs-EPI acquisition (6.48 ± 1.71 vs. 4.23 ± 1.49; p < 0.001). The mean ADC value was comparable in SMS rs-EPI and conventional rs-EPI (benign 1.45 × 10−3 vs. 1.43 × 10−3 mm2/s, p = 0.702; malignant 0.91 × 10−3 vs. 0.89 × 10−3 mm2/s, p = 0.076). The AUC was 0.957 in SMS rs-EPI and 0.983 in conventional rs-EPI. SMS rs-EPI technique allows for higher spatial resolution and slight reduction of scan time in comparison to conventional rs-EPI, which has potential for better differentiation between malignant and benign lesions of the breast.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qing Fu ◽  
Xiang-chuang Kong ◽  
Ding-Xi Liu ◽  
Kun Zhou ◽  
Yi-hao Guo ◽  
...  

Purpose: To qualitatively and quantitatively compare the image quality and diagnostic performance of turbo gradient and spin echo PROPELLER diffusion-weighted imaging (TGSE-PROPELLER-DWI) vs. readout-segmented echo-planar imaging (rs-EPI) in the evaluation of orbital tumors.Materials and Methods: A total of 43 patients with suspected orbital tumors were enrolled to perform the two DWIs with comparable spatial resolution on 3T. The overall image qualities, geometric distortions, susceptibility artifacts, and lesion conspicuities were scored by using a four-point scale (1, poor; 4, excellent). Quantitative measurements, including contrast-to-noise ratios (CNRs), apparent diffusion coefficients (ADCs), geometric distortion rates (GDRs), and lesion sizes, were calculated and compared. The two ADCs for differentiating malignant from benign orbital tumors were evaluated. Wilcoxon signed-rank test, Kappa statistic, and receiver operating characteristics (ROC) curves were used.Results: TGSE-PROPELLER-DWI performed superior in all subjective scores and quantitative GDR evaluation than rs-EPI (p &lt; 0.001), and excellent interobserver agreement was obtained for Kappa value ranging from 0.876 to 1.000. ADClesion of TGSE-PROPELLER-DWI was significantly higher than those of rs-EPI (p &lt; 0.001). Mean ADC of malignant tumors was significantly lower than that of benign tumors both in two DWIs. However, the AUC for differentiating malignant and benign tumors showed no significant difference in the two DWIs (0.860 vs. 0.854, p = 0.7448). Sensitivity and specificity could achieve 92.86% and 72.73% for TGSE-PROPELLER-DWI with a cutoff value of 1.23 × 10–3 mm2/s, and 85.71% and 81.82% for rs-EPI with a cutoff value of 0.99 × 10–3 mm2/s.Conclusion: Compared with rs-EPI, TGSE-PROPELLER-DWI showed minimized geometric distortion and susceptibility artifacts significantly improved the image quality for orbital tumors and achieved comparable diagnostic performance in differentiating malignant and benign orbital tumors.


Sign in / Sign up

Export Citation Format

Share Document