Lattice Boltzmann method for two-dimensional incompressible Navier-stokes equation with CUDA

Author(s):  
Treenath Kosriporn ◽  
Worasait Suwannik ◽  
Montri Maleewong
2016 ◽  
Vol 12 (2) ◽  
pp. 122-127
Author(s):  
Juraj Mužík

Abstract A Lattice Boltzmann method is used to analyse incompressible fluid flow in a two-dimensional cavity and flow in the channel past cylindrical obstacle. The method solves the Boltzmann’s transport equation using simple computational grid - lattice. With the proper choice of the collision operator, the Boltzmann’s equation can be converted into incompressible Navier-Stokes equation. Lid-driven cavity benchmark case for various Reynolds numbers and flow past cylinder is presented in the article. The method produces stable solutions with results comparable to those in literature and is very easy to implement.


2014 ◽  
Vol 554 ◽  
pp. 665-669
Author(s):  
Leila Jahanshaloo ◽  
Nor Azwadi Che Sidik

The Lattice Boltzmann Method (LBM) is a potent numerical technique based on kinetic theory, which has been effectively employed in various complicated physical, chemical and fluid mechanics problems. In this paper multi-relaxation lattice Boltzmann model (MRT) coupled with a Large Eddy Simulation (LES) and the equation are applied for driven cavity flow at different Reynolds number (1000-10000) and the results are compared with the previous published papers which solve the Navier stokes equation directly. The comparisons between the simulated results show that the lattice Boltzmann method has the capacity to solve the complex flows with reasonable accuracy and reliability. Keywords: Two-dimensional flows, Lattice Boltzmann method, Turbulent flow, MRT, LES.


2013 ◽  
Vol 729 ◽  
pp. 364-376 ◽  
Author(s):  
John C. Bowman

AbstractIn addition to conserving energy and enstrophy, the nonlinear terms of the two-dimensional incompressible Navier–Stokes equation are well known to conserve the global integral of any continuously differentiable function of the scalar vorticity field. However, the phenomenological role of these additional inviscid invariants, including the issue as to whether they cascade to large or small scales, is an open question. In this work, well-resolved implicitly dealiased pseudospectral simulations suggest that the fourth power of the vorticity cascades to small scales.


2007 ◽  
Vol 18 (04) ◽  
pp. 693-700 ◽  
Author(s):  
XIN FU ◽  
BAOMING LI ◽  
JUNFENG ZHANG ◽  
FUZHI TIAN ◽  
DANIEL Y. KWOK

In traditional computational fluid dynamics, the effect of surface energetics on fluid flow is often ignored or translated into an arbitrary selected slip boundary condition in solving the Navier-Stokes equation. Using a bottom-up approach, we show in this paper that variation of surface energetics through intermolecular theory can be employed in a lattice Boltzmann method to investigate both slip and non-slip phenomena in microfluidics in conjunction with the description of electrokinetic phenomena for electrokinetic slip flow. Rather than using the conventional Navier-Stokes equation with a slip boundary condition, the description of electrokinetic slip flow in microfluidics is manifested by the more physical solid-liquid energy parameters, electrical double layer and contact angle in the mean-field description of the lattice Boltzmann method.


Sign in / Sign up

Export Citation Format

Share Document