Lossless wavelet-based compression of digital elevation maps for fast and efficient search and retrieval

2005 ◽  
Vol 43 (5) ◽  
pp. 1210-1214 ◽  
Author(s):  
L.E. Boucheron ◽  
C.D. Creusere
2005 ◽  
Author(s):  
Amit J. Mhatre ◽  
Srinivas Palla ◽  
Sharat Chikkerur ◽  
Venu Govindaraju

Author(s):  
Akshat Divya Akshay ◽  
Jammula Nikhil ◽  
Arindam Chowdhury ◽  
S.A. Karthik

Search is an important aspect of information management often taken for granted. Domain specific repositories are growing in both size and numbers calling for efficient search and retrieval of documents. This paper explores the possible techniques and necessary system components for a search engine charting several iterative optimizations over the last few years. This paper focuses on NLP models while retaining basic principles from other methods that assist in information search.


Author(s):  
Vishnu Sharma ◽  
Vijay Singh Rathore ◽  
Chandikaditya Kumawat

Software reuse can improve software quality with the reducing cost and development time. Systematic reuse plan enhances cohesion and reduces coupling for better testability and maintainability. Software reuse approach can be adopted at the highest extent if relevant software components can be easily searched, adapted and integrated into new system. Large software industries hold their own well managed component libraries containing well tested software component with the project category based classification .Access to these repositories are very limited. Software reuse is facing so many problems and still not so popular. This is due to issues of general access, efficient search and adoption of software component. This paper propose a framework which resolves all of the above issues with providing easy access to components, efficient incremental semantics based search, repository management, versioning of components.


10.1596/34445 ◽  
2020 ◽  
Author(s):  
Louise Croneborg ◽  
Keiko Saito ◽  
Michel Matera ◽  
Don McKeown ◽  
Jan van Aardt

2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


2017 ◽  
Author(s):  
Indra Riyanto ◽  
Lestari Margatama

The recent degradation of environment quality becomes the prime cause of the recent occurrence of natural disasters. It also contributes in the increase of the area that is prone to natural disasters. Flood history data in Jakarta shows that flood occurred mainly during rainy season around January – February each year, but the flood area varies each year. This research is intended to map the flood potential area in DKI Jakarta by segmenting the Digital Elevation Model data. The data used in this research is contour data obtained from DPP–DKI with the resolution of 1 m. The data processing involved in this research is extracting the surface elevation data from the DEM, overlaying the river map of Jakarta with the elevation data. Subsequently, the data is then segmented using watershed segmentation method. The concept of watersheds is based on visualizing an image in three dimensions: two spatial coordinates versus gray levels, in which there are two specific points; that are points belonging to a regional minimum and points at which a drop of water, if placed at the location of any of those points, would fall with certainty to a single minimum. For a particular regional minimum, the set of points satisfying the latter condition is called the catchments basin or watershed of that minimum, while the points satisfying condition form more than one minima are termed divide lines or watershed lines. The objective of this segmentation is to find the watershed lines of the DEM image. The expected result of the research is the flood potential area information, especially along the Ciliwung river in DKI Jakarta.


Sign in / Sign up

Export Citation Format

Share Document