Hyperspectral Image Classification via Spatial Window-Based Multiview Intact Feature Learning

Author(s):  
Yue Zhao ◽  
Yiu-ming Cheung ◽  
Xinge You ◽  
Qinmu Peng ◽  
Jiangtao Peng ◽  
...  
2020 ◽  
Vol 10 (9) ◽  
pp. 2027-2031
Author(s):  
Xu Yifang

Hyperspectral image classification refers to a key difficulty on the domain of remote sensing image processing. Feature learning is the basis of hyperspectral image classification problems. In addition, how to jointly use the space spectrum information is Also an important issue in hyperspectral image classification. Recent ages have seen that as further exploration is developing, the method of hyperspectral image cauterization according to deep learning has been rapidly developed. However, existing deep networks often only consider reconstruction performance while ignoring the task itself. In addition, for improving preciseness of classification, most categorization methods use the fixed-size neighborhood of per hyperspectral pixel as the object of feature extraction, ignoring the identification and difference between the neighborhood pixel and the current pixel. On the basis of exploration above, our research group put forward with an image classification algorithm based on principal component texture feature deep learning, and achieved good results.


2015 ◽  
Vol 53 (3) ◽  
pp. 1592-1606 ◽  
Author(s):  
Jun Li ◽  
Xin Huang ◽  
Paolo Gamba ◽  
Jose M. Bioucas Bioucas-Dias ◽  
Liangpei Zhang ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 2033 ◽  
Author(s):  
Xiaofei Yang ◽  
Xiaofeng Zhang ◽  
Yunming Ye ◽  
Raymond Y. K. Lau ◽  
Shijian Lu ◽  
...  

Accurate hyperspectral image classification has been an important yet challenging task for years. With the recent success of deep learning in various tasks, 2-dimensional (2D)/3-dimensional (3D) convolutional neural networks (CNNs) have been exploited to capture spectral or spatial information in hyperspectral images. On the other hand, few approaches make use of both spectral and spatial information simultaneously, which is critical to accurate hyperspectral image classification. This paper presents a novel Synergistic Convolutional Neural Network (SyCNN) for accurate hyperspectral image classification. The SyCNN consists of a hybrid module that combines 2D and 3D CNNs in feature learning and a data interaction module that fuses spectral and spatial hyperspectral information. Additionally, it introduces a 3D attention mechanism before the fully-connected layer which helps filter out interfering features and information effectively. Extensive experiments over three public benchmarking datasets show that our proposed SyCNNs clearly outperform state-of-the-art techniques that use 2D/3D CNNs.


Sign in / Sign up

Export Citation Format

Share Document