Multi-time Scale Active and Reactive Power Coordinated Optimal Dispatch in Active Distribution Network Considering Multiple Correlation of Renewable Energy Sources

Author(s):  
Shuai Chen ◽  
Chengfu Wang ◽  
Zhenwei Zhang
2021 ◽  
Vol 2113 (1) ◽  
pp. 012056
Author(s):  
Hanbing Qu ◽  
Zheng Xu ◽  
Bo Wang ◽  
Pu Zhao

Abstract With the proliferation of the distributed energy resources (DERs), the scheduling and control of the distribution network have become more complicated. To cope with the uncertainty nature of distributed generation, a multi-timescale optimal dispatch method in active distribution network (ADN) based on the model predictive control (MPC) is proposed in this paper. First, based on MPC, a hierarchical scheduling framework for ADN is established, including long-timescale stage, and short-timescale stage. Then, via coordinated control of various resources in the ADN, i.e., distributed generators, energy storage, capacitor banks and OLTC transformer, the impact of intermittent renewable energy and load forecast errors can be reduced. Finally, considering the coupling characteristics of active and reactive power in the ADN, a joint active and reactive power optimization model is proposed to further reduce the network loss. Numerical simulation on a modified IEEE-33 distribution network system verifies the correctness and superiority of the proposed scheduling approach.


2021 ◽  
pp. 0309524X2110241
Author(s):  
Nindra Sekhar ◽  
Natarajan Kumaresan

To overcome the difficulties of extending the main power grid to isolated locations, this paper proposes the local installation of a combination of three renewable energy sources, namely, a wind driven DFIG, a solar PV unit, a biogas driven squirrel-cage induction generator (SCIG), and an energy storage battery system. In this configuration one bi-directional SPWM inverter at the rotor side of the DFIG controls the voltage and frequency, to maintain them constant on its stator side, which feeds the load. The PV-battery also supplies the load, through another inverter and a hysteresis controller. Appropriately adding a capacitor bank and a DSTATCOM has also been considered, to share the reactive power requirement of the system. Performance of various modes of operation of this coordinated scheme has been studied through simulation. All the results and relevant waveforms are presented and discussed to validate the successful working of the proposed system.


Sign in / Sign up

Export Citation Format

Share Document