storage capacitor
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 61)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Vol 96 (12) ◽  
pp. 124069
Author(s):  
Pragati Singh ◽  
Rudra Sankar Dhar ◽  
Srimanta Baishya

Abstract This paper presents micro-features of capacitorless memory cells based on snapback phenomenon and modeling of space-charges. 2—Dimensional gate grounded NMOS structure is specified and its operational window of the memory cell is inspected using the Synopsys TCAD tool. This work examines snapback behaviour in one transistor DRAM memory cell in the absence of a storage capacitor under zero gate bias and applied ramp of high current at the drain terminal. Carrier electrostatics and memory cell mechanisms are also explored by adjusting the slope of the high current ramp. The process variation is examined for different parameters in the device. The current crowding phenomenon due to the injection of electrons and holes is investigated, giving rise to ambipolar behaviour. Due to the snapback, redistribution of electron and hole current is investigated. This work also evaluates the impact on electrostatic potential along channel and bulk under the snapback. It explains the dependency of snapback on potential build-up. Post-snapback electron current flipping presents the flow line near the gate region. The bipolar activity is manifested in surface and bulk regions to show its impact through analytics. The effect of gate biasing is also examined under the applied current ramp.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7503
Author(s):  
Namanu Panayanthatta ◽  
Giacomo Clementi ◽  
Merieme Ouhabaz ◽  
Mario Costanza ◽  
Samuel Margueron ◽  
...  

Wireless sensor nodes (WSNs) are the fundamental part of an Internet of Things (IoT) system for detecting and transmitting data to a master node for processing. Several research studies reveal that one of the disadvantages of conventional, battery-powered WSNs, however, is that they typically require periodic maintenance. This paper aims to contribute to existing research studies on this issue by exploring a new energy-autonomous and battery-free WSN concept for monitor vibrations. The node is self-powered from the conversion of ambient mechanical vibration energy into electrical energy through a piezoelectric transducer implemented with lead-free lithium niobate piezoelectric material to also explore solutions that go towards a greener and more sustainable IoT. Instead of implementing any particular sensors, the vibration measurement system exploits the proportionality between the mechanical power generated by a piezoelectric transducer and the time taken to store it as electrical energy in a capacitor. This helps reduce the component count with respect to conventional WSNs, as well as energy consumption and production costs, while optimizing the overall node size and weight. The readout is therefore a function of the time it takes for the energy storage capacitor to charge between two constant voltage levels. The result of this work is a system that includes a specially designed lead-free piezoelectric vibrational transducer and a battery-less sensor platform with Bluetooth low energy (BLE) connectivity. The system can harvest energy in the acceleration range [0.5 g–1.2 g] and measure vibrations with a limit of detection (LoD) of 0.6 g.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012056
Author(s):  
Hanbing Qu ◽  
Zheng Xu ◽  
Bo Wang ◽  
Pu Zhao

Abstract With the proliferation of the distributed energy resources (DERs), the scheduling and control of the distribution network have become more complicated. To cope with the uncertainty nature of distributed generation, a multi-timescale optimal dispatch method in active distribution network (ADN) based on the model predictive control (MPC) is proposed in this paper. First, based on MPC, a hierarchical scheduling framework for ADN is established, including long-timescale stage, and short-timescale stage. Then, via coordinated control of various resources in the ADN, i.e., distributed generators, energy storage, capacitor banks and OLTC transformer, the impact of intermittent renewable energy and load forecast errors can be reduced. Finally, considering the coupling characteristics of active and reactive power in the ADN, a joint active and reactive power optimization model is proposed to further reduce the network loss. Numerical simulation on a modified IEEE-33 distribution network system verifies the correctness and superiority of the proposed scheduling approach.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2401
Author(s):  
Qian Wang ◽  
Bingyang Luo ◽  
Jun Wang ◽  
Zhe Kong ◽  
Feng Liu

The DC-link filter which includes a magnetic inductor and a storage capacitor is one of the key parts of adjustable speed drives in the market. It significantly affects the stability, reliability, and power density of the motor-drive system. This paper proposes a novel, variable active inductor to improve the performance of DC links in terms of stability, reliability, size, and cost. In contrast to conventional DC-link magnetic inductors, the variable active inductor is made of power electronic circuits, including active switches, passive filters, and smart controllers, which no longer rely on magnetic material. The demonstration shows that the inductor can emulate the electrical characteristics of the magnetic inductor for filtering harmonics and stabilizing the DC link, meanwhile representing a smaller size, lighter weight, and lower cost compared with a conventional one. Furthermore, this paper proposes a variable inductance control method which is able to adaptively tune the inductance value with the operating conditions of the drive system. The DC link can be stabilized, and high performance can be maintained in both balanced and unbalanced grid voltage conditions. A case study of the proposed variable inductor in a motor drive with a three-phase diode-bridge rectifier as the front end is discussed. Experimental results are given to verify the functionality and effectiveness of the proposed variable inductor.


2021 ◽  
Author(s):  
Valeriy Chernyak ◽  
Vitalii Iukhymenko ◽  
Evgen Martysh ◽  
Oleg Nedybaliuk ◽  
Oleg Fedorovich ◽  
...  

<p>Pulsed electric discharges in a liquid with the sufficiently wide range of energy contributions to them can generate diverging shock waves. А significant part of this energy is carried away by these waves from the center of the system to its periphery. At the same time, pulsed plasma-liquid systems limited by reflecting walls of both cylindrical and spherical geometry are insufficiently studied. A fundamental feature of such systems is the generation of a sequence of both diverging and converging (reflected) shock waves by a single pulse discharge. It was shown earlier that in a cylindrical plasma-liquid system with a height of the cylinder (h) comparable with the interelectrode distance (d), radius of the cylinder base R (at R >> h), when discharge current is increased, the ratio of the second diverging shock wave amplitude to the amplitude of the first diverging shock wave can be → 1. This leads to effective return of the energy carried away to the periphery back to the center of the system by converging shock waves. The collapse of the converging shock waves and initiated processes in the center of such plasma-fluid systems can be very interesting. The paper presents the results of experimental studies of pulsed cylindrical plasma-liquid system using both H<sub>2</sub>O and a mixture of H<sub>2</sub>O / D<sub>2</sub>O and pure D<sub>2</sub>O as a liquid. The energy-storage capacitor is charged by using a high voltage DC power supply (up to 70 kV).</p>


2021 ◽  
Author(s):  
Zhiyong Zeng ◽  
Lari M. Koponen ◽  
Rena Hamdan ◽  
Zhongxi Li ◽  
Stefan M. Goetz ◽  
...  

AbstractObjectiveThis article presents a novel transcranial magnetic stimulation (TMS) pulse generator with a wide range of pulse shape, amplitude, and width.ApproachBased on a modular multilevel TMS (MM-TMS) topology we had proposed previously, we realized the first such device operating at full TMS energy levels. It consists of ten cascaded H-bridge modules, each implemented with insulated-gate bipolar transistors, enabling both novel high-amplitude ultrabrief pulses as well as pulses with conventional amplitude and duration. The MM-TMS device can output pulses including up to 21 voltage levels with a step size of up to 1100 V, allowing relatively flexible generation of various pulse waveforms and sequences. The circuit further allows charging the energy storage capacitor on each of the ten cascaded modules with a conventional TMS power supply.Main resultsThe MM-TMS device can output peak coil voltages and currents of 11 kV and 10 kA, respectively, enabling suprathreshold ultrabrief pulses (> 8.25 μs active electric field phase). Further, the MM-TMS device can generate a wide range of near-rectangular monophasic and biphasic pulses, as well as more complex staircase-approximated sinusoidal, polyphasic, and amplitude-modulated pulses. At matched estimated stimulation strength, briefer pulses emit less sound, which could enable quieter TMS. Finally, the MM-TMS device can instantaneously increase or decrease the amplitude from one pulse to the next in discrete steps by adding or removing modules in series, which enables rapid pulse sequences and paired-pulse protocols with variable pulse shapes and amplitudes.SignificanceThe MM-TMS device allows unprecedented control of the pulse characteristics which could enable novel protocols and quieter pulses.


2021 ◽  
Author(s):  
Valeriy Chernyak ◽  
Vitalii Iukhymenko ◽  
Evgen Martysh ◽  
Oleg Nedybaliuk ◽  
Oleg Fedorovich ◽  
...  

<p>Pulsed electric discharges in a liquid with the sufficiently wide range of energy contributions to them can generate diverging shock waves. А significant part of this energy is carried away by these waves from the center of the system to its periphery. At the same time, pulsed plasma-liquid systems limited by reflecting walls of both cylindrical and spherical geometry are insufficiently studied. A fundamental feature of such systems is the generation of a sequence of both diverging and converging (reflected) shock waves by a single pulse discharge. It was shown earlier that in a cylindrical plasma-liquid system with a height of the cylinder (h) comparable with the interelectrode distance (d), radius of the cylinder base R (at R >> h), when discharge current is increased, the ratio of the second diverging shock wave amplitude to the amplitude of the first diverging shock wave can be → 1. This leads to effective return of the energy carried away to the periphery back to the center of the system by converging shock waves. The collapse of the converging shock waves and initiated processes in the center of such plasma-fluid systems can be very interesting. The paper presents the results of experimental studies of pulsed cylindrical plasma-liquid system using both H<sub>2</sub>O and a mixture of H<sub>2</sub>O / D<sub>2</sub>O and pure D<sub>2</sub>O as a liquid. The energy-storage capacitor is charged by using a high voltage DC power supply (up to 70 kV).</p>


2021 ◽  
Vol 11 (13) ◽  
pp. 5901
Author(s):  
Qingyang Tan ◽  
Liangzong He

An improved modulation strategy based on minimum energy storage for DC-link capacitance reduction in a six-switch AC-AC converter is proposed. The proposed modulation strategy enables the energy on the capacitor to accumulate and release twice each in a complete switching cycle, achieving the effect of “fast charging and discharging”. Meanwhile, the inversion and rectification are modulated synchronously. Hence, there is minimum energy stored in the DC-link capacitor. Then, the time average modeling analysis is presented to take insight analysis. When there is the same voltage ripples constraint on the DC side for the conventional and improved modulation strategies, the six-switch converter under the improved modulation strategy has the much less capacitance value of the storage capacitor and even realizes non-electrolytic capacitance. Therefore, improving the system efficiency, power density, and output waveform quality and extending the system life can be achieved. The operation principle and modulation strategy are discussed in detail. Finally, the simulation model and experimental prototype are built to verify effectiveness of the topology and correctness of the proposed six-switch AC-AC converter modulation strategy.


Sign in / Sign up

Export Citation Format

Share Document