squirrel cage induction generator
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 34)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
pp. 70-78
Author(s):  
M. M. Metwally ◽  
M. K. Ratib ◽  
M.M. Aly ◽  
A.M. Abdel‑Rahim

In recent times, various types of wind generators have been linked to the power grids globally and the focus has been to control them to be more efficient and reliable. This study concisely discusses performance analysis, modeling, and assessment of different wind generators (permanent magnet synchronous generator, doubly-fed induction generator, squirrel cage induction generator), covering their benefits, drawbacks, and impact on the electric power systems. This comparison aims to guarantee that their technical and economic evaluations are comparable, allowing engineers to make a more informed decision about which generator is best suitable for their installation. Findings for the investigated wind generators lead to significant observations about their application fields, such as permanent magnet synchronous generator outperforms doubly-fed induction generator and squirrel cage induction generator, especially during grid disruptions; on the other hand, squirrel cage induction generator is simple and inexpensive.


Author(s):  
Abedalgany Athamneh ◽  
Bilal Al Majali

<p><span lang="EN-US">A stable operation of wind turbines connected to the grid is an essential requirement to ensure the reliability and stability of the power system. To achieve such operational objective, installing static synchronous compensator static synchronous compensator (STATCOM) as a main compensation device guarantees the voltage stability enhancement of the wind farm connected to distribution network at different operating scenarios. STATCOM either supplies or absorbs reactive power in order to ensure the voltage profile within the standard-margins and to avoid turbine tripping, accordingly. This paper present new study that investigates the most suitable-location to install STATCOM in a distribution system connected wind farm to maintain the voltage-levels within the stability margins. For a large-scale squirrel cage induction generator squirrel-cage induction generator (SCIG-based) wind turbine system, the impact of STATCOM installation was tested in different places and voltage-levels in the distribution system. The proposed method effectiveness in enhancing the voltage profile and balancing the reactive power is validated, the results were repeated for different scenarios of expected contingencies. The voltage profile, power flow, and reactive power balance of the distribution system are observed using MATLAB/Simulink software. </span></p>


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4524
Author(s):  
Juliano C. L. da Silva ◽  
Thales Ramos ◽  
Manoel F. Medeiros Júnior

The power quality analysis is an essential issue in the integration of distributed energy resources to the grid. Recent standards regulate the harmonics disturbances due to the increasing penetration of intermittent energy sources interconnected with the grid employing power converters. This paper aims to analyze the power quality of an interconnected wind turbine system based on a Squirrel Cage Induction Generator (SCIG) driven by an Electromagnetic Frequency Regulator (EFR). The steady state of the EFR harmonic model is developed in the stationary frame based on the conventional induction generator modeling, which allows the study of the harmonic disturbances in the electrical and mechanical variables due to the PWM inverter of the EFR’s armature voltage. There is no electrical connection between the EFR and SCIG, and the results show that the inherent system inertia contributes to the mitigation of the harmonic content at the grid side generated by the switching. In addition to the steady-state results, the Total Rated Distortion (TRD), which considers the harmonics and interharmonics components, was computed and presented a good performance compared to the IEEE 1547 standard and real data extracted of a single Doubly Fed Induction Generator (DFIG). Finally, the harmonic performance of the proposed system was evaluated considering the impact of the equivalent Thevenin impedance of the grid at the Point of Common Coupling (PCC).


2021 ◽  
pp. 0309524X2110241
Author(s):  
Nindra Sekhar ◽  
Natarajan Kumaresan

To overcome the difficulties of extending the main power grid to isolated locations, this paper proposes the local installation of a combination of three renewable energy sources, namely, a wind driven DFIG, a solar PV unit, a biogas driven squirrel-cage induction generator (SCIG), and an energy storage battery system. In this configuration one bi-directional SPWM inverter at the rotor side of the DFIG controls the voltage and frequency, to maintain them constant on its stator side, which feeds the load. The PV-battery also supplies the load, through another inverter and a hysteresis controller. Appropriately adding a capacitor bank and a DSTATCOM has also been considered, to share the reactive power requirement of the system. Performance of various modes of operation of this coordinated scheme has been studied through simulation. All the results and relevant waveforms are presented and discussed to validate the successful working of the proposed system.


2021 ◽  
pp. 0309524X2110152
Author(s):  
Gopal Singh ◽  
Kalpathy Sundaram

For better annual energy production, wind turbine generator components are expected to perform efficiently and safely. Development of recent high-efficiency generators and motors leading their designs with less cooling capacity. Bearings are one of the most stressed components in the generator. Recent studies have indicated that bearing failure is the prime cause of generator failure, in wind turbine application. Grease lubrication deterioration was found to be the leading cause of motors and generators bearing failure. Grease service life for generators are closely associated with the operating temperature. One issue with the less cooling design is the higher bearing temperature. This led to marginal lubrication, premature bearing failure, and reduce generator reliability. To verify this and address the issue of inadequate and imbalanced bearing cooling; this paper presents recent experimentation performed on-air to air-cooled squirrel cage induction generator. This test addresses a potential issue with the IC6A1A6 cooled generator design and recommends the updates with corresponding standards. To get optimal bearing life and generator reliability, either allowed bearing operating temperature range should be reduced significantly, by developing a new cooling strategy or standards committee should come up with different intervals of lubrication for both ends of the bearings. Issues similar to with IEEE standard 841 high-efficiency motors can be avoided, where a study performed on the reliability of these motors used in refinery confirmed that motors are at greater risk. A proactive plan based on the result and recommendations in this paper will help to secure the safe wind turbine-generator operation.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1665
Author(s):  
Matija Bubalo ◽  
Mateo Bašić ◽  
Dinko Vukadinović ◽  
Ivan Grgić

This paper presents a wind energy conversion system (WECS) for grid-isolated areas. The system includes a squirrel-cage induction generator (SCIG) and a battery-assisted quasi-Z source inverter (qZSI). The batteries ensure reliable and stable operation of the WECS in spite of the wind power oscillations. The maximum power is captured from both the wind turbine (WT) and the SCIG through adjustment of the WT speed and the SCIG operating flux, respectively. The utilized maximum power point tracking (MPPT) algorithms belong to the group of fuzzy logic (FL) search-based algorithms. The battery state of charge (SOC) is tracked online and controlled. When it reaches the minimum allowed level, the load is automatically disconnected; conversely, when it reaches the maximum allowed level, the battery charging is stopped via WT speed control. The load voltage root-mean-square (RMS) value and frequency are at all times controlled at grid-level values. The performance of the proposed system was experimentally validated, in steady state and during transients, achieving wide ranges of wind speed, load power, SOC, and alternating current/direct current (AC/DC) voltage levels. The system startup and low-wind operation were also analyzed. The control algorithms were executed in real time by means of the DS1103 and MicroLabBox controller boards (dSpace).


Sign in / Sign up

Export Citation Format

Share Document