STATCOM for Improvement of Active and Reactive Power at the Wind Based Renewable Energy Sources

Author(s):  
S. Narisimha Rao ◽  
J. Sunil Kumar ◽  
G. Muni Reddy
2021 ◽  
pp. 0309524X2110241
Author(s):  
Nindra Sekhar ◽  
Natarajan Kumaresan

To overcome the difficulties of extending the main power grid to isolated locations, this paper proposes the local installation of a combination of three renewable energy sources, namely, a wind driven DFIG, a solar PV unit, a biogas driven squirrel-cage induction generator (SCIG), and an energy storage battery system. In this configuration one bi-directional SPWM inverter at the rotor side of the DFIG controls the voltage and frequency, to maintain them constant on its stator side, which feeds the load. The PV-battery also supplies the load, through another inverter and a hysteresis controller. Appropriately adding a capacitor bank and a DSTATCOM has also been considered, to share the reactive power requirement of the system. Performance of various modes of operation of this coordinated scheme has been studied through simulation. All the results and relevant waveforms are presented and discussed to validate the successful working of the proposed system.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3364 ◽  
Author(s):  
Francisco García-López ◽  
Manuel Barragán-Villarejo ◽  
Alejandro Marano-Marcolini ◽  
José Maza-Ortega ◽  
José Martínez-Ramos

This paper assesses the behaviour of active distribution networks with high penetration of renewable energy sources when the control is performed in a centralised manner. The control assets are the on-load tap changers of transformers at the primary substation, the reactive power injections of the renewable energy sources, and the active and reactive power exchanged between adjacent feeders when they are interconnected through a DC link. A scaled-down distribution network is used as the testbed to emulate the behaviour of an active distribution system with massive penetration of renewable energy resources. The laboratory testbed involves hardware devices, real-time control, and communication infrastructure. Several key performance indices are adopted to assess the effects of the different control actions on the system’s operation. The experimental results demonstrate that the combination of control actions enables the optimal integration of a massive penetration of renewable energy.


2020 ◽  
Vol 10 (20) ◽  
pp. 7106
Author(s):  
Charis S. Demoulias ◽  
Kyriaki-Nefeli D. Malamaki ◽  
Spyros Gkavanoudis ◽  
Juan Manuel Mauricio ◽  
Georgios C. Kryonidis ◽  
...  

The gradual displacement of synchronous generators driven by conventional power plants, due to the increasing penetration of distributed renewable energy sources (DRES) in distribution grids, is creating a shortage of crucial ancillary services (AS) which are vital for the frequency and voltage stability of the grid. These AS, and some new ones, could now be offered by the DRES, particularly those that are converter interfaced, in a coordinated way in order to preserve the grid stability and resilience. Although recent standards and grid codes specify that the DRES exhibit some system support functions, there are no specifications on how to measure and quantify (M & Q) them both at DRES level and in aggregated form. The M & Q of AS is crucial, since it would allow the AS to be treated as tradable AS in the current and future AS markets. This paper attempts to define a number of AS that can be offered by converter-interfaced DRES and suggests methods for their M & Q. The new AS addressed are: (1) inertial response; (2) primary frequency response; (3) active power smoothing (ramp-rate limitation); (4) exchange of reactive power for voltage regulation; (5) fault-ride-through (FRT) and contribution to fault clearing; (6) voltage harmonic mitigation. Additionally, a rough estimation of the additional investment and operational cost, as well as the financial benefits associated with each AS is provided in order to form the basis for the development of business models around each AS in the near future.


Sign in / Sign up

Export Citation Format

Share Document